EGU24-6352, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6352
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Phosphorous in the seabed sediments of the Gulf of Riga, Baltic Sea: Fe-Mn concretions as main carriers of mobile phosphorous 

Markus Ausmeel1,2, Martin Liira1,2, Päärn Paiste2, Aivo Lepland1,2,3, and Sten Suuroja1
Markus Ausmeel et al.
  • 1Geological Survey of Estonia, Department of Marine Geology and Geophysics, Rakvere, Estonia
  • 2University of Tartu, Department of Geology, Tartu, Estonia
  • 3Geological Survey of Norway, Trondheim, Norway

Baltic Sea is a geologically young semi-enclosed brakish-water body which water exchange with the ocean has been gradually declining. Approximately 85 million people live in the Baltic Sea's catchment area, resulting in significant human impact on the basin's ecosystem. Eutrophication due to anthropogenic discharge of nutrients is considered to be the most serious environmental problem which leads to a greater growth of phytoplankton and algae, deterioration of water quality, and lack of oxygen in near-bottom water masses. As a result of recent large-scale input of nutrients, phosphorus has accumulated in the seabed sediments from where it can be remobilized and released into the water column under favorable conditions (hypoxic or anoxic). Marine sediments contain phosphorus in various components i.e. fractions, but not all of them are affected by remobilization. Therefore, knowing how phosphorus fractions are distributed in seabed sediments is important.

One part of the Baltic Sea that has received little attention, but will significantly affect the entire Baltic Sea in the future, is the Gulf of Riga. The Gulf of Riga accounts for less than 5% of the total area of the Baltic Sea and less than 2% of the total water volume. Due to its shallowness and limited connection with the open Baltic Sea, the Gulf of Riga is strongly influenced by riverine input. Intense agriculture, rapid development of industry, and urbanization have resulted in high loads of nutrients into the Gulf of Riga already since the 1960s.

Phosphorus fractions and their vertical distribution were studied from the sea-bottom sediments from the Gulf of Riga and other coastal areas of western Estonia. The amount of potentially mobile phosphorus stored in the surface sediments of the Gulf of Riga is several times higher than in other accumulation areas of the Baltic Sea, with concentrations as high as 980 mg/kg(dw). A strong correlation between Mn and mobile phosphorus concentration suggests that Fe-Mn concretions control the amount of phosphorus in the sediments of the Gulf of Riga. Although the bottom waters of the Gulf of Riga are currently predominantly oxic, a decreasing trend of deep-layer oxygen concentrations and more frequent hypoxia in the Gulf of Riga during previous decades have been documented. Considering the large amount of potentially mobile phosphorus in the sediments of the Gulf of Riga, surpassing the annual total phosphorus input to the Baltic Sea, a substantial release of phosphorus could be inevitable, possibly impacting the entire Baltic Sea ecosystem.

How to cite: Ausmeel, M., Liira, M., Paiste, P., Lepland, A., and Suuroja, S.: Phosphorous in the seabed sediments of the Gulf of Riga, Baltic Sea: Fe-Mn concretions as main carriers of mobile phosphorous , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6352, https://doi.org/10.5194/egusphere-egu24-6352, 2024.