EGU24-6387, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6387
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Spatiotemporal structure of raindrop size distribution due to flow field in a convective precipitation system simulated by bin cloud microphysics model.

Megumi Okazaki1, Kosei Yamaguchi1, Tomoro Yanase2, and Eiichi Nakakita1
Megumi Okazaki et al.
  • 1Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
  • 2RIKEN Cluster for Pioneering Research, Kobe, Japan

Precipitation droplets are influenced by environmental fields and transform in time and space, following cloud microphysical processes. Accordingly, a raindrop size distribution (DSD) changes shape in a various form. However, DSDs cannot be calculated directly in radar or bulk models and are expressed using an approximate function. Exponential and gamma distribution are well-known as approximation functions, but there are DSDs of shapes that cannot be represented by these functions. One of them is a bimodal DSD with two peaks. Previous modeling studies have indicated that the bimodal DSD is formed when the collision-breakup process reaches equilibrium. On the other hand, recent observation-based studies have discussed the influence of convective activity within the precipitation system on forming the bimodal DSD. However, observations have not been able to quantitatively study the microphysical changes of individual particles and have yet to reveal the formation mechanisms within the precipitation system. In this study, we investigated quantitatively the process of the formation of the bimodal DSD by two-dimensional simulation of multicellular convection with the bin method. The simulation results showed that the bimodal DSD was formed during the updraft and downdraft in the mature stage of the multicell. Additionally, the bimodal DSD was formed at lower altitudes where there was inflow into the precipitation system. Particles that constituted the maximum of the bimodal DSD were found to have been advected by the inflow. Particles that constituted the local maximum dropped against the updraft. In contrast to these, particles that constituted the local minimum were less affected by the inflow and had difficulty dropping against the updraft. These results suggested that the bimodal DSD was formed by horizontal and vertical size sorting because of inflow and updrafts in the mature multicellular convection. In the future, it is necessary to simulate the reproduction of observed cases and compare them with observations.

How to cite: Okazaki, M., Yamaguchi, K., Yanase, T., and Nakakita, E.: Spatiotemporal structure of raindrop size distribution due to flow field in a convective precipitation system simulated by bin cloud microphysics model., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6387, https://doi.org/10.5194/egusphere-egu24-6387, 2024.