EGU24-6468, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6468
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the impact of thunder on cloud droplets and ice crystals

Konstantinos Kourtidis and Stavros Stathopoulos
Konstantinos Kourtidis and Stavros Stathopoulos
  • School of Engineering, Demokritus University of Thrace, Lab. of Atmospheric Pollution and Pollution Control Engineering of Atmospheric Pollutants, Dept. of Environmental Engineering, Xanthi, Greece (kourtidi@env.duth.gr)

In the lightning channel pressures can be of the order of 100 atm and hence in the produced thunder, sound pressure levels (SPL) can be very high. Additionally, the thunder frequency spectra have peaks for peal and claps at around 100 Hz and around 50 Hz for rumble sounds, with intracloud lightning having peaks at even fewer Hz. These low frequencies are ideal for acoustically induced orthokinetic agglomeration of droplets. Thunder occurs in cloud environments where not only large numbers of droplets are present, but additionally the shockwave front expands at supersonic velocities and hence could cause near the lightning channel modulations of droplet size distributions and increase ice crystals numbers through e.g. vibrational breakup. We present calculations for the two mechanisms above (orthokinetic agglomeration and vibrational breakup) for typical cloud droplet sizes and concentrations, including also clouds containing desert dust. In thunderstorm conditions, it is found that acoustic orthokinetic agglomeration of droplets can be very effective and can produce very rapidly changes in the mean cloud droplet diameter. Also, it is found that the critical flow velocities, over which breakup occurs, is easily exceeded near the lightning channel and will lead to droplet and ice crystal breakup. We note that all models of ice crystal generation in clouds substantially underestimate the observed ice crystal numbers, and the mechanism presented here may be responsible for the discrepancy. We also note that these processes need further study to assess how they could interfere with the lightning generation process itself, through both charge redistribution in the modified droplet size distribution spectra, as well as the increase in vertical and turbulent transport velocities of the smaller ice crystals resulting from breakup. 

How to cite: Kourtidis, K. and Stathopoulos, S.: On the impact of thunder on cloud droplets and ice crystals , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6468, https://doi.org/10.5194/egusphere-egu24-6468, 2024.