Towards Fully Distributed Rainfall-Runoff Modelling with Graph Neural Networks
- 1Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, Netherlands
- 2Deltares, Unit of Inland Water Systems, Department of Catchment and Urban Hydrology, Netherlands
Fully distributed hydrological models take into account the spatial variability of a catchment, allowing for a more accurate representation of its heterogeneity, and assessing its hydrological response at multiple locations. However, physics-based fully distributed models can be time-consuming when it comes to model runtime and calibration, especially for large-scale catchments. On the other hand, deep learning models have shown great potential in the field of hydrological modelling, outperforming lumped rainfall-runoff conceptual models, and improving prediction in ungauged basins via catchment transferability. Despite these advances, the field still lacks a multivariable, fully distributed hydrological deep learning model capable of generalizing to unseen catchments. To address the aforementioned challenges associated with physics-based distributed models and deep learning models, we explore the possibility of developing a fully distributed deep learning model by using Graph Neural Networks (GNN), an extension of deep learning methods to non-Euclidean topologies including graphs and meshes.
We develop a surrogate model of wflow_sbm, a fully distributed, physics-based hydrological model, by exploiting the similarities between its underlying functioning and GNNs. The GNN uses the same input as wflow_sbm: distributed static parameters based on physical characteristics of the catchment and gridded dynamic forcings. The GNN is trained to produce the same output as wflow_sbm, predicting multiple gridded variables related to rainfall-runoff, such as streamflow, actual evapotranspiration, subsurface flow, saturated and unsaturated groundwater storage, snow storage, and runoff. We show that our GNN model achieves high performance in unseen catchments, indicating that GNNs are a viable option for fully distributed multivariable hydrological models capable of generalizing to unseen regions. Furthermore, the GNN model achieves a significant computational speedup compared to wflow_sbm. We will continue this research, using the GNN-based surrogate models as pre-trained backbones to be fine-tuned with measured data, ensuring accurate model adaptation, and enhancing their practical applicability in diverse hydrological scenarios.
How to cite: Nelemans, P., Bentivoglio, R., Buitink, J., Meshgi, A., Hrachowitz, M., Dahm, R., and Taormina, R.: Towards Fully Distributed Rainfall-Runoff Modelling with Graph Neural Networks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6846, https://doi.org/10.5194/egusphere-egu24-6846, 2024.