EGU24-6912, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6912
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Upper mantle anisotropy under the strike-slip Dead Sea rift

Huikai Xu, Youqiang Yu, and Jiaji Xi
Huikai Xu et al.
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai, China (huikaixu@tongji.edu.cn)

Continental rifting is one of the fundamental tectonics of the Earth evolution while our current knowledge on the dynamic mechanism of the strike-slip ones are seriously limited. Here, a systematically shear-wave splitting investigation has been performed in the typical strike-slip Dead Sea rift to illuminate the upper mantle azimuthal anisotropic status across a transform boundary. Totally, 1855 well-defined anisotropic measurements are observed from 102 stations with dominantly N-S fast orientation, which is parallel to the rift strike but deviate from the absolute plate motion direction, mainly result from the plate-driven mantle flow deflected by the thick lithosphere of the eastern Arabian plate. Additionally, the significant fluctuation patterns of splitting times are identified on both the rift-parallel and rift-orthogonal profiles, among which the relatively large splitting times are generally concentrated at the rift zone and attributed to additional coupling lithospheric deformation from the shearing-oriented melt pockets. The consistent rift-parallel fast orientations, combined with the other geoscientific evidences, rule out the role of mantle plume or edge-driven convection in the rift development and further infer the Dead Sea rift to evolve in a passive mode.

How to cite: Xu, H., Yu, Y., and Xi, J.: Upper mantle anisotropy under the strike-slip Dead Sea rift, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6912, https://doi.org/10.5194/egusphere-egu24-6912, 2024.