An Integrated Modelling Approach to Support Sustainable Water Resources Management and Climate Change Adaptation for Irrigated Agriculture in the Nile Delta, Egypt.
- 1Wageningen University & Research, Environmental science, Netherlands (samar.gomaa@wur.nl)
- 2Heliopolis University,Egypt
Climate change dominates the nexus between water resources management needed for farm farmland irrigation and food security insurance. The challenge increases when the population proliferates and the demand for food and water rises. This study will explore how climate change may affect food production and water use in the Nile Delta, Egypt, through higher temperatures and sea level rise. It also aims to investigate the best management practices (BMPs) that can be used to tackle these issues. In the Delta, where irrigated agriculture is practiced, sea level rise is a major potential impact of climate change since it significantly impacts the salinity of the water and soil. Furthermore, higher temperatures directly influence evapotranspiration, a crucial component of crop yields and water balance. To determine this interdisciplinary nexus between climate, water, and food, integrated hydro/hydrogeological and crop models will be created by calibrating and simulating the current baseline situation. For that purpose, a basic crop model will be merged with the coupled SWAT_MODFLOW hydro(geo)logical simulation software. Additionally, a range of forecasting scenarios will be run to represent the impact of multiple climate change scenarios. The outcomes of operated scenarios will be evaluated regarding socioeconomic and environmental aspects to support the decision-making process and define how far the BMPs can be implemented on ground in this study area.
How to cite: Gomaa, S., Fleskens, L., Carvalho Nunes, J., and Badr, M.: An Integrated Modelling Approach to Support Sustainable Water Resources Management and Climate Change Adaptation for Irrigated Agriculture in the Nile Delta, Egypt., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-693, https://doi.org/10.5194/egusphere-egu24-693, 2024.