EGU24-6984, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6984
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition

Hongye Liu1, Rui Zhang2, Gaowen Dai1, and Yansheng Gu1
Hongye Liu et al.
  • 1China University of Geosciences, China
  • 2Hubei Normal University, Huangshi, China

To explore the relationship between the global change, westerlies, and central Asian aridity, we report ~1.1 Ma local sedimentary environment changes according to high-resolution gamma ray (GR) from downhole logging, Grain size, magnetic susceptibility (MS), rubidium/strontium (Rb/Sr) ratios and total organic carbon (TOC) of an 800-m core (KT11) from the Kashgar region in the western Tarim Basin, arid zone of China. Four dominant sedimentation types, including lacustrine facies, delta facies, fluvial facies, and aeolian dunes, were identified through lithology and grain size frequency curves. The 1.1 Ma sedimentary successions experienced delta deposits with fluvial and aeolian deposits and lacustrines (1.1-0.6 Ma), alternating fluvial and aeolian facies with the occurrence of deltas and lacustrines (0.6-0.15 Ma), and aeolian facies interbedded with deltas and fluvial facies (0.15 Ma-present). Spectral analyses of the GR, MS, and Rb/Sr data reveal cycles with ~70 m, ~30 m and ~14 m wavelengths. These cycles represent ~100-kyr short-eccentricity, ~40-kyr obliquity and ~20-kyr precession frequencies, respectively and mainly are driven by orbitally forced climate change.

Stepwise drying sedimentary conditions and enhanced desertification indicated by increasing Rb/Sr ratios and proportion of aeolian sands, and decreasing TOC since the past 1.1 Ma, implied intensified westerlies, likely resulted from ice volume expansion and ongoing global cooling according to geological record comparison and simulations during the Last Glacial Maximum compared to preindustrial conditions, which may have controlled the expansion of the permanent deserts in inland Asia. These persistent drying trends and intensified westerly circulation in arid regions during glacial periods after the mid-Pleistocene Transition indicated by larger amplitudes of aeolian sand proportion than prior to 0.6 Ma are similar to those in the interior monsoonal Asia, where the larger-amplitude of median grain size indicated enhanced East Asian Winter monsoon intensity and drier glacials.

How to cite: Liu, H., Zhang, R., Dai, G., and Gu, Y.: Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6984, https://doi.org/10.5194/egusphere-egu24-6984, 2024.