EGU24-7028, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-7028
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Modelling interactions between consecutive floods and channel-floodplain systems in the Lower Yellow River, China

Wei Li, Lehong Zhu, and Peng Hu
Wei Li et al.
  • Zhejiang University, Port, Coastal and Offshore Engineering, Ocean College, Zhoushan, China (lw05@zju.edu.cn)

Consecutive floods combined with hyperconcentrated floods and moderate/low sediment-laden floods have always been observed in the Lower Yellow River (LYR) characterized by complex channel-floodplain systems of alternated meandering and straight segments. Interactions between those floods and sophisticated morphological segments are much more complicated than normal low-sediment laden rivers of relatively simple geometry. In this regard, we numerically investigate the 92.8 consecutive floods in the natural channel-floodplain reach of Xiaolangdi-Jiahetan in the LYR by deploying a 2-D depth-averaged fully coupled morphological model. The major focus includes (1) the unusual phenomenon of downstream peak discharge increase and (2) the different hydro-morphodynamic behaviors between meandering and straight channel-floodplain systems. For the former, the peak discharge increase of hyperconcentrated floods could be satisfactorily reproduced when the effects of bed roughness reduction and bed deformation are considered simultaneously. For the latter, the water-sediment exchange between channels and floodplains is relatively strong in hyperconcentrated floods and exhibits distinct features in meandering and straight segments. The straight one is featured by lateral channel-floodplain diffusion while the meandering one is characterized by the transition from lateral diffusion at the meander apex to streamwise advection. Consequently, the deposition at the meanders (especially on the floodplains) is much larger than that at the straight reach floodplains resulting in a remarkable uneven deposition pattern along the streamwise direction.

 

Key words: Lower Yellow River; Hyperconcentrated floods; Channel-floodplain interactions; Morphological modelling; Sediment transport

 

Acknowledgements: National Natural Science Foundation of China (No. 12272349, 52339005).

How to cite: Li, W., Zhu, L., and Hu, P.: Modelling interactions between consecutive floods and channel-floodplain systems in the Lower Yellow River, China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7028, https://doi.org/10.5194/egusphere-egu24-7028, 2024.