EGU24-7150, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-7150
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Attenuation and amplification effects of seismic translational and rotational components in shallow media

Wei Li, Yi Zhang, and Yun Wang
Wei Li et al.
  • China University of Geosciences, Beijing, China

In a three-dimensional Cartesian coordinate system, the deformation of the medium around a particle includes strain, translation, and rotation. Rotational motion is an important aspect of current seismological research. Seismologists have recognized the importance of rotational motion in dynamic response and damage of structures caused by certain earthquakes, through investigations into earthquake damage. In rapid earthquake intensity reports, it is essential to not only consider factors such as earthquake location, source depth, magnitude, and fault rupture model, but also to emphasize the analysis of the amplification effect of shallow media. We discuss the attenuation characteristics and difference between seismic translational and rotational components by medium viscoelasticity through two-dimensional numerical simulation, analyze the amplification effect of shallow viscoelastic low-velocity layer on ground motion by the reference site spectral ratio (RSSR), and discuss the difference of the amplification caused by different low-velocity layer factors. The results show that the seismic primary frequency decreases more with increasing viscoelasticity, and the energy of rotational component attenuates more significantly than that of translational component. The elastic low-velocity layer amplifies high-frequency signals of body waves greater than the viscoelastic low-velocity layer, especially in rotational component. When shallow low-velocity layers consist of multilayered sediments compared to a single sediment, the amplification of surface wave is stronger, particularly in rotation. We follow the research method used for seismic translation to discuss the amplification effect of shallow viscoelastic medium on seismic rotation, which is important for performance-based seismic design and earthquake damage analysis.

How to cite: Li, W., Zhang, Y., and Wang, Y.: Attenuation and amplification effects of seismic translational and rotational components in shallow media, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7150, https://doi.org/10.5194/egusphere-egu24-7150, 2024.