EGU24-7189, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-7189
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Observation of intraplate repeating earthquakes within the fault zone of the 2008 ML 3.6 earthquake

Seula Jung1, Dong-Hoon Sheen2, Chang-Soo Cho1, and Kwangsu Kim1
Seula Jung et al.
  • 1Korea Institute of Geoscience and Mineral Resources, Earthquake Research Center, Daejeon, Korea, Republic of (sajung@kigam.re.kr)
  • 2Chonnam National University, Department of Geological Environment, Gwangju, Korea, Republic of

The repeating earthquake (RE) ruptures a single fault patch repeatedly and generates highly similar waveforms. The RE is often observed in the area of subduction zones (Uchida and Matsuzawa, 2013; Yu et al., 2013; Uchida, 2019). However, even in the intraplate region, the RE has been found in the ruptured fault zones (Li et al., 2007; Li et al., 2011; Bisrat et al., 2012). We searched for REs around the epicenter of the 2008 ML 3.6 Gyerong earthquake that occurred in Mount Gyeryong, the Korean Peninsula, located in a stable intraplate region. In the study area, 48 earthquakes (ML 0.4–3.6) were reported during 2002–2022, while we found 50 earthquakes during 2018–2022 using a template matching. We located the events based on the Hypoellipse (Lahr, 1999), and also refined the hypocenters using the double difference method (hypoDD; Waldhauser and Ellsworth, 2000) to obtain the high-resolution fault geometry. It is found that the epicenters exhibit a linear alignment of the fault striking along WNW-ESE consistent with one of the strikes of the ML 3.6 event which has a strike-slip focal mechanism with a strike of 108° or 198°, a dip of 83° or 88°, and a rake of -2° or -173°, which indicates that the ML 3.6 earthquake occurred with a left-lateral fault slip. We estimated the rupture directivity of the ML 3.6 event from the apparent source time functions obtained by the empirical Green’s function approach. A vast number of microearthquakes including aftershocks of the ML 3.6 event occurred in the rupture direction (i.e. the east-southeast of the epicenter of the ML 3.6 event). We identified REs based on the waveform similarity (cross-correlation coefficient > 0.95) and their locations (co-location) to distinguish them from neighboring earthquakes. We found that the REs occurred within the rupture radius of the ML 3.6 event. Upon categorizing these REs according to their family duration, we identified three swarm-type families that occurred in 2007, 2009, and 2010, along with a continuous-type family spanning from 2011 to 2019. These observations demonstrate the close relationship between the REs and the ML 3.6, specifically highlighting the fault’s rupture and healing process.

How to cite: Jung, S., Sheen, D.-H., Cho, C.-S., and Kim, K.: Observation of intraplate repeating earthquakes within the fault zone of the 2008 ML 3.6 earthquake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7189, https://doi.org/10.5194/egusphere-egu24-7189, 2024.