Revisiting the relationship between the North Pacific decadal variability and the Kuroshio Extension bimodality
- College of Oceanography, Hohai University, Nanjing, China (wangq@hhu.edu.cn)
The Kuroshio Extension (KE) bimodality has important effects on the ocean environment, ecosystem and climate. Previous studies have revealed that the Kuroshio Extension (KE) bimodality is mainly determined by the westward-propagating Rossby wave triggered by the North Pacific decadal variability such as PDO or NPGO: the positive (negative) phase of NPGO corresponds to the stable (unstable) KE state. However, the KE state and the NPGO seem to be decoupled since 2017, during which the NPGO takes a negative phase but the KE is in a stable state. This study employs the Convergent Cross Mapping (CCM) method to investigate the causality between the KE bimodality and NPGO. Simultaneously, we divide the KE region into the upstream (west of 146°E) and downstream regions. It is found that the NPGO has a significant causal impact on the downstream KE state. But the effect on the upstream KE state significantly weakens around 2017. Further analysis indicates that the upstream KE state is mainly caused by eddy activity in the Kuroshio large meander region south of Japan. In particular, the changes in the eddy activity affect the downstream advection of eddies and induce changes in the Kuroshio position over the Izu ridge, which cause different states in the KE upstream region. Therefore, we should not only consider the NPGO change, but also the eddy activity change in the Kuroshio region south of Japan when understanding and predicting the KE low-frequency variability.
How to cite: Wang, Q.: Revisiting the relationship between the North Pacific decadal variability and the Kuroshio Extension bimodality, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7259, https://doi.org/10.5194/egusphere-egu24-7259, 2024.