Developing gravimetric water level meter
- HQ tech, HQ tech, Daejeon, Korea, Republic of (star9j@naver.com)
According to Korean Statistical Information Service(KOSIS)’s data, the area of the Republic of Korea is 100,444 km2 and the area of Seoul, the capital city of Korea, is 605 km2, which is only 0.6 % of the area of Korea. However, the population of the Korea is 51.75 million, and that of Seoul is 9.39 million, accounting for a large 18 % of Korea. A large number of these densely populated cities are located in river basins. In most of time, water resources stored upstream are used as various purposes(drinking, industrial, and agricultural use) and drained downstream. During summer monsoon, however, rain that falls in the basin is discharged downstream as quickly as possible to prevent flooding. But heavy, concentrated rain caused by recent climate change often leads to capacity to exceed designed capacity. Moreover, inundation occurred due to neglect of neglect of drain pipe and street inlet and is becoming a serious social problem.
This study was conducted to observe the ‘flood level’ in the city, which is basic data for flood management. We already have the ability to accurately and conveniently measure the water level and transmit the data when flooding occurs at multiple point in the city. To monitor water levels in underpasses and areas where poor drainage is expected, rods on the centerline of roadway or border of the sidewalk are used. The prototype has been completed, and additional work is underway to miniaturize the built-in equipment(board, communication, and battery) and to extend battery duration. To maintain accuracy of measurement in the process of the miniaturization, it is important to secure enough distance between weight and outer case to minimize the surface tension effect. So it is necessary to understand the relationship between the weight-outer case distance and water level observation measurements. This relationship was confirmed through various weights and outer cases. As a result, the accuracy was found to be sufficient when a weight-outer case distance is about 9 mm or longer.
Acknowledgement : This research was support by a (2022-MOIS63-002) of Cooperative Research Method and Safety Management Technology in National Disaster funded by Ministry of Interior and Safety(MOIS, Korea).
How to cite: Jeong, Y., Jo, H. J., Park, S. J., and Kong, O. Y.: Developing gravimetric water level meter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7295, https://doi.org/10.5194/egusphere-egu24-7295, 2024.