EGU24-7315, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-7315
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

From hydraulic root architecture models to efficient macroscopic sink terms 

Daniel Leitner, Andrea Schnepf, and Jan Vanderborght
Daniel Leitner et al.
  • FZ Juelich, IBG-3, Germany (d.leitner@fz-juelich.de)

Root water uptake strongly affects soil water balance and plant development. It can be described by mechanistic models of soil-root hydraulics based on soil water content, soil and root hydraulic properties, and the dynamic development of the root architecture. Recently, novel upscaling methods have emerged (Vanderborght et al. 2023, 2021), which enable the application of detailed mechanistic models on a larger scale, particularly for land surface and crop models, by using mathematical upscaling.

In this study, we explore the underlying assumptions and the mathematical fundamentals of the upscaling approach. Our analysis rigorously investigates the errors introduced in each step during the transition from fine-scale mechanistic models, which considers the nonlinear perirhizal resistance around each root, to more macroscopic representations. Upscaling steps simplify the representation of the root architecture, the perirhizal geometry, and the soil spatial dimension and thus introduces errors compared to the full complex 3D simulations. In order to investigate the extent of these errors, we perform simulation case studies: spring barley as a representative non-row crop and maize as a representative row crop, and using three different soils.

We show that the accuracy of the upscaled modeling approach strongly differs, depending on  root architecture and soil type. Furthermore, we identify the individual steps and assumptions that lead to the most important losses in accuracy. An analysis of the trade off between model complexity and accuracy provides valuable guidance for selecting the most suitable approach for specific applications.

 

References 

Vanderborght, J., Couvreur, V., Meunier, F., Schnepf, A., Vereecken, H., Bouda, M., and Javaux, M. (2021). From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models. Hydrology and Earth System Sciences, 25(9):4835–4860.

Vanderborght, J., Leitner, D., Schnepf, A., Couvreur, V., Vereecken, H., and Javaux, M. (2023). Combining root and soil hydraulics in macroscopic representations of root water uptake. Vadose Zone Journal, e20273.

How to cite: Leitner, D., Schnepf, A., and Vanderborght, J.: From hydraulic root architecture models to efficient macroscopic sink terms , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7315, https://doi.org/10.5194/egusphere-egu24-7315, 2024.