Origin, gradient, and recharge processes of perched aquifers of the Monahans and Kermit dune fields, northern Chihuahuan Desert, Texas, USA
- Baylor University, Geosciences, United States of America (alix_fournier1@baylor.edu)
Water is scarce in the northern Chihuahuan Desert, with ~350 mm/yr precipitation, potential evapotranspiration at 1800mm/yr, and rising mean annual temperatures by >2°C since 1960. The main water resources are the Ogallala, Pecos Valley, Dockum, and Edwards-Trinity Plateau aquifers, with depletion rates of ~1 m/yr. Despite the arid climate, the Monahans and Kermit dune fields host perched water tables 1-10 m below the surface, in up to 40 m of aeolian sand spanning the past ca. 2.6 ma, and isolated from the underlying Pecos Valley Aquifer by a Pliocene/Pleistocene fluvial gravel-rich clay. A 3D model based on borehole lithology shows a topographic inversion with a southwest-trending paleo-slope infilled with aeolian sand. The aeolian stratigraphy and basin modeling indicate progressive infilling by aeolian sand with periods of pluvial lake formation and soil development, with groundwater providing dune field stability for vertical accretion and limiting aeolian erosion. Cores of sediments retrieved from the Monahans and Kermit dune fields were sampled for OSL ages and yielded ages up to 500 ka 20 m below the surface of the dunes, with identified deposition periods between 545-470 ka, 300-260 ka, 70-45 ka and post 16 ka. A set of three monitoring wells equipped with data loggers revealed aquifer recharge of 35-40 cm in the Spring and Fall consistent with regional precipitation variability, and a daily recharge cycle of 3-8 mm potentially linked to plant uptake or gravitational forces. Deuterium and 18O isotopic ratios for the dune field aquifers indicate an evaporative enriched water source compared to the Pecos Valley Aquifer, Pecos River, and Chihuahuan Desert precipitation, consistent with local precipitation. Apparent 14C ages <1360 yr for aquifer waters from the upper 1 m indicate recent meteoric recharge. Older 14C ages of > 1.3 to 2.2 ka for waters ~30 m deep and at the western edge of the aquifer indicate mixing with Holocene recharge waters in a southwest flowing aquifer. In contrast, the Pecos Valley Aquifer yields 14C ages of ca. 0.9 to 40 ka with the youngest ages near the dune fields, which suggests recharge from these perched aquifers.
How to cite: Fournier, A. and Forman, S.: Origin, gradient, and recharge processes of perched aquifers of the Monahans and Kermit dune fields, northern Chihuahuan Desert, Texas, USA , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-765, https://doi.org/10.5194/egusphere-egu24-765, 2024.
Comments on the supplementary material
AC: Author Comment | CC: Community Comment | Report abuse