Unusual fault kinematic behaviour and near-surface crustal stress variations before and during an earthquake series in the Vienna Basin (Austria) in spring 2021
- Masaryk University, Faculty of Science, Department of Geological Sciences, Brno, Czechia (melda@sci.muni.cz)
Short-term earthquake prediction remains one of the primary goals of seismotectonics. Here detailed observations of unusual fault kinematic behaviour and near-surface crustal stress variations are presented from before, during, and shortly after an earthquake series which culminated with two Mw 4.6 and 4.4 events near Breitenau, Vienna Basin, Austria, on 30 March 2021 and 19 April 2021, respectively. The oblique normal NNE-SSW trending Pitten Fault is exposed in Altaquelle Cave close to the southern margin of the Vienna Basin in the eastern Alps, which is known to have hosted several historical earthquakes of Mw = > 5. This cave has developed in Triassic marbles of the Central Alpine Permomesozoic. The observed branch of this active steeply dipping fault is associated with the seismogenic sinistral Vienna Basin Fault and the NE-SW trending Mur-Mürz Fault. To investigate the fault activity, TM71 moiré extensometers have been used to obtain precise three-dimensional records of fault kinematic behaviour at the micron scale while the recently developed SMB2018 protocol has been used to define the stress state associated with each fault reactivation event. The observations were then compared to the Copernicus European Ground Motion Service InSAR time series derived from Sentinel-1 data. From late 2018 to early 2021, the three-dimensional kinematic behaviour of the fault comprised a variety of different on-plane as well as out-of-plane hanging block displacements ranging in magnitude from 3 to 19 μm. Then, around the time of the earthquake series in 2021, four significant displacement events were recorded: (i) 0.186 mm along a vector of 186/-12° (i.e. upward) on 16 March; (ii) 0.615 mm along a vector of 177/-88° (upward) on 26 March; (iii) 0.066 mm along a vector of 013/26° (downward) on 30 March; and (iv) 0.022 mm along a vector of 308/54° (downward) on 11 May. The third of these events occurred on the same day as the largest earthquake. These events are all much larger than any other record of fault displacement recorded in the Eastern Alps since 2013. This contribution details this unusual fault displacement behaviour and compares the calculated stress states with both the focal solutions for each earthquake and InSAR maps of E-W and vertical ground motion. A comprehensive understanding of this important seismotectonic event helps to shed further light on potential earthquake precursory phenomena.
How to cite: Melichar, R., Baroň, I., Rowberry, M., Jelének, J., Sokol, Ľ., del Puy Papí Isaba, M., Freudenthaler, C., Hausmann, H., Plan, L., Grasemann, B., Stemberk, J., Schultz, R. A., and Bürgmann, R.: Unusual fault kinematic behaviour and near-surface crustal stress variations before and during an earthquake series in the Vienna Basin (Austria) in spring 2021, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7664, https://doi.org/10.5194/egusphere-egu24-7664, 2024.