EGU24-7802, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-7802
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Cloud based tool to enhance urban resilience with the Fresnel Platform using the Multi-Hydro Model

Guillaume Drouen, Daniel Schertzer, Auguste Gires, and Ioulia Tchiguirinskaia
Guillaume Drouen et al.
  • Hydrologie Météorologie et Complexité (HM&Co), École des Ponts Paris-Tech, Champs-sur-Marne, France (guillaume.drouen@enpc.fr)

The aim of the Fresnel platform of École des Ponts ParisTech is to foster research and innovation in multiscale urban resilience. Studying the hydrological response of such complex urban areas accounting also for small scale spatio-temporal precipitation variability requires adapted tools. For these reasons, RadX provides a user-friendly graphical interface to run simulations using a fully distributed and physically based model: Multi-Hydro. RadX is designed as a Software as a Service (SaaS) platform, allowing users to work with data across a wide range of space-time scales and the appropriate tools for analyzing and simulating this data.

The hydrological model, developed at École des Ponts ParisTech, integrates four open-source software applications previously used and validated independently by the scientific community as well as practitionners. Its modular structure includes a surface flow module, sewer flow module, a ground flow module and a precipitation module. It is able to simulate the quantity of runoff and rainwater infiltrated into unsaturated soil layers from any space-time varying rainfall event at any location of the studied peri-urban watersheds, as well as depth and flow in all the pipes and nodes of the sewer network.

Users can launch hydrological simulations using the Multi-Hydro model directly from their web browser, while they are run on dedicated servers. They can adjust two key input parameters: the land use of the studied catchment and the rainfall data. Dedicated tools have been developed to enable users to modify the land use of the catchment with the same ease as using a raster graphic editor. Users can either choose real rainfall events captured by the X-band weather radar located at École des Ponts ParisTech or utilize user-defined synthetic rainfall as input. Data from other radar can also easily be integrated. 

For the simulation output, the interface provides users with different tools to study in detail the impact of the chosen input parameters. For instance, by simply selecting two sewer junctions on an interactive map, users can generate a sewer path between these two points and display an interactive representation of the water level heights in sewer conduits and junctions along the user-defined sewer network path.

Additional components can be integrated into RadX to meet specific requirements using visual tools and forecasting systems, including those from third parties. Developments are still in progress, with a constant loop of requests and feedback from the scientific and professional world.

How to cite: Drouen, G., Schertzer, D., Gires, A., and Tchiguirinskaia, I.: Cloud based tool to enhance urban resilience with the Fresnel Platform using the Multi-Hydro Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7802, https://doi.org/10.5194/egusphere-egu24-7802, 2024.