EGU24-7828, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-7828
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

3-D structural model of the Rioni foreland fold-and-thrust belt, Georgia 

Onise Enukidze1, Victor Alania1, Nino Kvavadze1, Alexandre Razmadze2, Anzor Giorgadze1, and Demur Merkviladze1
Onise Enukidze et al.
  • 1I. Javakhishvili Tbilisi State University, M. Nodia Institute of Geophysics, Sector of Earth Physics and Paleomagnetism, Tbilisi, Georgia (onise.enukidze@tsu.ge)
  • 2I. Javakhishvili Tbilisi State University, A. Janelidze Institute of Geology, Tbilisi, Georgia

The Rioni foreland basin system is located between the Lesser Caucasus (LC) and the Greater Caucasus (GC) orogens. Deformation of the Rioni double flexural foreland basin was controlled by the action of two opposing orogenic fronts, the LC retro-wedge to the south and the GC pro-wedge to the north (Alania et al., 2022). The Rioni foreland fold-and-thrust belt (RFFTB) is part of the Greater Caucasus pro-wedge.  Here we show the deformation structural style of the RFFTB based on seismic reflection profiles and serial structural cross-sections. On the basis of serial structural cross-sections, 3-D structural models. 2-3D structural models show that the Rioni foreland is a thin-skinned fold-and-thrust belt and the main style of deformation within the RFFTB is represented by a set of fault-propagation folds, duplexes, and triangle zones. The presence of two detachment levels in the RFFTB raises important questions about the deformation sequence. The serial structural cross-sections show that fault-propagation folds above the upper detachment level can develop by piggyback and break-back thrust sequences. The formation of fault-bend fold duplex structures above the lower detachment is related to piggyback thrust sequences. The synclines within the Rioni foreland fold-and-thrust belt are filled by the Middle Miocene-Pleistocene shallow marine and continental syn-tectonic sediments, forming a series of typical thrust-top basins. The evolution of the thrust-top basins was mainly controlled by the kinematics of thrust sequences. Fault-propagation folds and duplex structures formed the main structure of the thrust-top basin. Recent earthquake data indicate that the RFFTB is still tectonically active and earthquake focal mechanisms within the RFFTB are thrust faults (Tsereteli et al., 2016), and active structures are mainly represented by thrust faults, blind thrusts, and blind wedges. 

Acknowledgments. This work was funded by the Shota Rustaveli National Science Foundation (SRNSF) (grant# FR-21-26377).

References

Alania, V., et al. (2022). Deformation structural style of the Rioni foreland fold-and-thrust belt, western Greater Caucasus: Insight from the balanced cross-section. Frontiers in Earth Science 10, 10968386.

Tsereteli, N., et al. (2016). Active tectonics of central-western Caucasus, Georgia. Tectonophysics 691, 328–344.

How to cite: Enukidze, O., Alania, V., Kvavadze, N., Razmadze, A., Giorgadze, A., and Merkviladze, D.: 3-D structural model of the Rioni foreland fold-and-thrust belt, Georgia , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7828, https://doi.org/10.5194/egusphere-egu24-7828, 2024.