EGU24-7977, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-7977
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Reconstructing the Earth in Deep-Time: A New and Open Framework for the PANALESIS Model

Florian Franziskakis1, Christian Vérard2, and Gregory Giuliani1
Florian Franziskakis et al.
  • 1Institut des Sciences de l'Environnement, Université de Genève, Genève, Suisse
  • 2Section des Sciences de la Terre et de l'Environnement, Université de Genève, Genève, Suisse

The Panalesis model (Vérard, 2019) was developed in a preliminary version according to concepts, methods and tools that follow the work carried out for more than 20 years at the University of Lausanne (Stampfli & Borel, 2002; Hochard, 2008). Although the techniques are relevant, development under ArcGIS® does not allow visibility and easy accessibility of the model to the scientific community.

A major effort is therefore underway to migrate the entire model to an open source version using a FAIR approach for research software (Chue Hong et al., 2021). This migration concerns both the plate tectonic maps covering all the world over the entire Phanerozoic and part of the Neoproterozoic, but also the creation of paleoDEMs (global quantified topographies).

The Panalesis model and its entire architecture is therefore currently migrated to QGIS (a free and open source geographic information system). TopographyMaker, the software designed to convert polylines from the reconstruction map into a points grid with elevation values is now working as a plugin on QGIS. The output palaeoDEMS will also be published according to the FAIR principles for scientific data management and stewardship (Wilkinson et al., 2016).

The development and future refinements of TopographyMaker will enhance the Earth system modelling, especially coupling between models of different shells of the Earth such as atmospheric circulation, climatic evolution, and mantle dynamics. The topography is, for instance, considered a first order controlling factor for CO2 evolution over geological timescales, through silicate weathering (MacDonald et al., 2019).

How to cite: Franziskakis, F., Vérard, C., and Giuliani, G.: Reconstructing the Earth in Deep-Time: A New and Open Framework for the PANALESIS Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7977, https://doi.org/10.5194/egusphere-egu24-7977, 2024.