EGU24-8030, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8030
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The use of normalized difference vegetation index (NDVI) in sediment connectivity analysis: insights for considering land cover changes in Sediment flow Connectivity Index (SfCI)

Marina Zingaro1, Giovanni Scicchitano1, Alberto Refice2, Alok Kushabaha1,3, Antonella Marsico1, Deodato Tapete4, Alessandro Ursi4, and Domenico Capolongo1,2
Marina Zingaro et al.
  • 1Department of Earth and GeoEnvironmental Sciences, University of Bari, Bari, Italy
  • 2Institute for the Electromagnetic Sensing of the Environment-Italian National Research Council (IREA-CNR), Bari, Italy
  • 3IUSS – School for Advanced Studies, Pavia, Italy
  • 4Italian Space Agency (ASI), Rome, Italy

Land cover plays a fundamental role in surface dynamics that involve sediment connectivity. The processes of sediment erosion, transport and deposition are strongly conditioned by land coverage types (classes) that physically can mitigate, prevent or increase sediment production and mobility on the surface. In fact, land cover and land use data are required for the computation of some indices and models of sediment connectivity. However, it should be considered that land cover changes can impact these processes, especially if they occur over a short period of time.

This work presents an assessment of land cover changes in three different hydrographic basins (river Severn basin in UK, river Vernazza basin in northwestern Italy and Lama Camaggi basin in southern Italy) in relation to their respective sediment connectivity patterns, described by Sediment flow Connectivity Index (SfCI) in previous works (Zingaro et al., 2019; Zingaro et al., 2020; Zingaro et al., 2023). The main aim is to evaluate the use of normalized difference vegetation index (NDVI) to consider land cover changes in sediment connectivity analysis. The NDVI is computed from satellite multi-spectral images (Sentinel-2) in time period between the reference year of the land cover used in previous SfCI calculation and the last year (2023) in each of study area. The results show that (1) NDVI highlights the occurrence of land cover changes over short time periods in many areas of the basins, (2) the introduction of NDVI in SfCI modifies sediment mobility values also affecting the definition of sediment connectivity pattern.

The use of NDVI can improve the analysis of sediment connectivity by providing more dynamism in the description of sediment pathways on both spatial and temporal scales. The present experimentation gives new insights to consider surface cover changes in SfCI contributing to update the algorithm and to investigate the possibility of its enhancement.

Acknowledgments

Research performed in the framework of the project “GEORES - Applicativo GEOspaziale a supporto del miglioramento della sostenibilità ambientale e RESilienza ai cambiamenti climatici nelle aree urbane”, funded by the Italian Space Agency (ASI), Agreement n. 2023-42-HH.0, as part of ASI’s program “Innovation for Downstream Preparation for Science” (I4DP_SCIENCE).

References

  • Zingaro, M.; Refice, A.; Giachetta, E.; D’Addabbo, A.; Lovergine, F.; De Pasquale, V.; Pepe, G.; Brandolini, P.; Cevasco, A.; Capolongo, D. Sediment Mobility and Connectivity in a Catchment: A New Mapping Approach. Science of The Total Environment 2019, 672, 763–775, doi:10.1016/j.scitotenv.2019.03.461.
  • Zingaro, M.; Refice, A.; D’Addabbo, A.; Hostache, R.; Chini, M.; Capolongo, D. Experimental Application of Sediment Flow Connectivity Index (SCI) in Flood Monitoring. Water 2020, 12, 1857, doi:10.3390/w12071857.
  • Zingaro, M.; Scicchitano, G.; Palmentola, P.; Piscitelli, A.; Refice, A.; Roseto, R.; Scardino, G.; Capolongo, D. Contribution of the Sediment Flow Connectivity Index (SfCI) in Landscape Archaeology Investigations: Test Case of a New Interdisciplinary Approach. Sustainability 2023, 15, 15042, doi:10.3390/su152015042.

How to cite: Zingaro, M., Scicchitano, G., Refice, A., Kushabaha, A., Marsico, A., Tapete, D., Ursi, A., and Capolongo, D.: The use of normalized difference vegetation index (NDVI) in sediment connectivity analysis: insights for considering land cover changes in Sediment flow Connectivity Index (SfCI), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8030, https://doi.org/10.5194/egusphere-egu24-8030, 2024.