EGU24-8239, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8239
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mid-Holocene ecosystem reorganisation in the Weddell Sea: dynamic sea ice and climate inferred from novel Antarctic snow petrel deposits (Heimefrontfjella Range)

Mark Stevenson1, Dominic Hodgson2,1, Michael Bentley1, Darren Gröcke3, and Erin McClymont1
Mark Stevenson et al.
  • 1Durham University, Department of Geography, United Kingdom (mark.stevenson@durham.ac.uk)
  • 2British Antarctic Survey, Ice Sheets and Climate Change, Cambridge, United Kingdom
  • 3Durham University, Department of Earth Sciences, United Kingdom

Sea ice in Antarctica is closely coupled to the climate system, influencing water mass upwelling, albedo and the exchange of heat and gas between the ocean and atmosphere. Sea ice also supports a diverse ecosystem which is sensitive to changes in climate and biogeochemistry. The Heimefrontfjella mountain range in East Antarctica features the nesting sites of the snow petrel (Pagodroma nivea) where finely laminated stomach-oil deposits (regurgitated dietary contents) are deposited. Such deposits can provide valuable information on Holocene dietary changes of the snow petrel that may relate to palaeoclimatic variations. Snow petrel feeding grounds in the Weddell Sea range from neritic (coastal) zones rich in fish, to the productive open ocean where Antarctic krill (Euphausia superba) become increasingly important. Distinct dietary signatures are recorded in the biomarkers of these deposits, providing new evidence of changing sea-ice and climate in the Weddell Sea.

Here we focus on stomach-oil deposits from Heimefrontfjella. A highly resolved radiocarbon-dated (14C-AMS) sequence spanning ~6,500 to 2,000 cal. yr BP has been investigated for organic biomarkers (fatty acids, sterols), stable isotopes of carbon and nitrogen (δ13C, δ15N) and inorganic composition by X-ray fluorescence (XRF).  From ~6,500 to 6,000 cal. yr BP fatty acid markers were generally high in concentration, with particularly high levels of C14:0 mirrored by high δ15N suggesting food sources rich in Antarctic krill and periods of enhanced feeding in the open ocean. Subsequently between 6,000 and 4,500 cal. yr BP there was a marked reduction in C14:0, C18:0 and δ15N, although phytol concentration remained high. This trophic shift suggests a transitional Weddell Sea still rich in productivity with snow petrels feeding in both the open ocean and close to the shore on a mixture of fish, krill and squid. This is consistent with regional mid-Holocene warmth, and also suggests dynamic variable meteorological and oceanographic conditions during this period. Subsequently, between ~4,500 and 2,000 cal. yr BP organic marker concentrations were markedly lower, suggesting a relatively low productivity period, which we anticipate required more coastal feeding by snow petrels. This change is consistent with evidence from regional reconstructions suggesting movement into neoglacial conditions.

Together these findings highlight that the Weddell Sea experienced relatively short-term decadal and centennial-scale changes in sea ice and climate during the Holocene. Our results support existing regional proxies (e.g. offshore sediment records, lake records, ice-core records and palaeo-glacial thinning history) and highlight the importance of snow petrel deposits in recording palaeo-dietary and ecosystem changes in Antarctic marine systems.

How to cite: Stevenson, M., Hodgson, D., Bentley, M., Gröcke, D., and McClymont, E.: Mid-Holocene ecosystem reorganisation in the Weddell Sea: dynamic sea ice and climate inferred from novel Antarctic snow petrel deposits (Heimefrontfjella Range), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8239, https://doi.org/10.5194/egusphere-egu24-8239, 2024.