EGU24-8243, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8243
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A New Approach to Infrasound Sensor Design

Cansun Guralp, Paul Minchinton, Horst Rademacher, and Murray McGowan
Cansun Guralp et al.
  • Gaiacode Ltd, Silchester, Nr Reading, United Kingdom of Great Britain – England, Scotland, Wales (cguralp@gaiacode.com)

Current infrasound sensor designs have shortcomings inherent in their open-loop arrangement. Among them are the limited dynamic range, the lack of linearity of the response function over the desired frequency range and – may be most importantly – the fact that such sensors can only be calibrated in the laboratory and not under real conditions in the field.

Here we present a novel infrasound sensor design, which overcomes these and other shortcomings. At the core of our new sensor lies a feedback loop. It is based on a proven technology already applied in many sensor and control systems, particularly relevant for Earth science in the design and manufacturing of high fidelity broadband seismic sensors.

The new infrasound sensor uses a precision bellow, which deflects in response to pressure variations or atmospheric infrasound waves. The movement of the bellow in single degree of deflection is measured with a differential capacitive displacement transducer. Its circuitry is a Blumlein bridge arrangement operating at a frequency of 45 KHz and a driver signal amplitude of 20 V. The transducer's output signal is then synchronously fed back to the regular linearised magnetic force transducer after passing through a Proportional Integral and Differential (PID) controller.

This design increases the bandwidth of the sensor to five decades, from 2.7 mHz to more than 200 Hz. At the same time the response of the sensor is essentially flat over the entire frequency range with only minor variations of less than +/- 0.1 dB. We measured the dynamic range of the sensor to be in excess of 155 dB, a significant increase compared to current open loop systems.

The infrasound sensors theoretical transfer function is compared to practical measurements providing sensors characteristics including its detection levels over the complete frequency response.

The system calibration is carried out analogously to the calibration of broadband seismic sensors. We inject a known calibration signal (either sinusoidal, square wave or broadband noise) directly into the feedback force transducer. This setup allows the calibration of the infrasound sensor in the laboratory as well as after deployment in a field station.

How to cite: Guralp, C., Minchinton, P., Rademacher, H., and McGowan, M.: A New Approach to Infrasound Sensor Design, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8243, https://doi.org/10.5194/egusphere-egu24-8243, 2024.