EGU24-8381, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8381
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Transition from Unstable Slip to Rate-Dependent Creep Controlled by High Fluid Pressure

Lei Zhang1, Changrong He1, and Sylvain Barbot2
Lei Zhang et al.
  • 1Institute of Geology, Chin Earthquake Administration, China (zhanglei@ies.ac.cn)
  • 2Department of Earth Sciences, University of Southern California.

To investigate the frictional behavior of basalt under hydrothermal conditions, we apply sliding experiments using basalt gouge under the temperature of 100-600ºC, effective normal stress of 150MPa, and fluid pressure of 30MPa and 100MPa, respectively. Experiment results under 30MPa pore pressure show that basalt exhibits velocity-strengthening behavior at 100-200ºC and changes to velocity-weakening behavior at 400-600ºC; meanwhile, at 400ºC, velocity dependence of basalt evolves with slip from initial velocity weakening to velocity-strengthening. Results under 100MPa fluid pressure show a similar transition of velocity dependence at 300ºC; however, at higher temperatures of 400-600ºC, velocity strengthening behavior occurs, accompanied by strong slip weakening behavior at the slowest loading rate (0.04μm/s). During the velocity step, the experiment exhibits a rate-dependent creep without transient evolution with slip. Microstructure observation reveals significant differences between samples sheared under 30MPa and 100MPa fluid pressure. At higher fluid pressure and temperatures of 400-600ºC, the porosity of the basalt gouge layer is significantly reduced, and deformation is characterized by pervasive shear with no apparent localization. Such results suggest that the healing process/plastic deformation is activated at higher fluid pressure, leading to slip stability transition and slip-weakening of frictional strength.

How to cite: Zhang, L., He, C., and Barbot, S.: Transition from Unstable Slip to Rate-Dependent Creep Controlled by High Fluid Pressure, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8381, https://doi.org/10.5194/egusphere-egu24-8381, 2024.