EGU24-8451, updated on 08 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Comparison between model and observational cloud fraction adjustment using explainable machine learning

Yichen Jia1,2, Hendrik Andersen1,2, and Jan Cermak1,2
Yichen Jia et al.
  • 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • 2Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

This ongoing study uses machine learning to quantify and compare observation- and global climate model-based sensitivities of cloud fraction (CF) for marine boundary layer clouds (MBLCs) to atmospheric aerosols. In addition, differences in the meteorological influence on these sensitivities between the model and observation are examined.

Aerosol-cloud interactions in MBLCs remain one of the most substantial sources of uncertainties in climate simulations. Recent studies have reported that climate forcing from an increase in low-level liquid cloud fraction due to aerosol perturbations may be dominant. However, the impact of ambient meteorological conditions on the aerosol influence on CF continues to pose challenges as their covariability and interactions obscure the quantification of the aerosol–CF relationship.

We established a data-driven framework based on cloud droplet number concentration (Nd, as a proxy for aerosol) and CF retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) and meteorological parameters from the European Centre for Medium-Range Weather Forecasts Reanalysis v.5 (ERA5). The eXtreme Gradient Boosting (XGBoost) machine learning is applied to the daily collocated MODIS-ERA5 data (2011-2019) from 60°N to 60°S to predict CF with Nd and meteorological predictors. The Nd–CF sensitivity and its dependence on meteorological factors are quantified by SHapley Additive exPlanation (SHAP) values and SHAP interaction values. We found that both CF sensitivities and their interactions with meteorology derived from the SHAP approach exhibit distinct and coherent regional characteristics.

The ongoing work is intended to implement an identical XGBoost-SHAP setup on outputs from the ICOsahedral Non-hydrostatic-Hamburg Aerosol Module (ICON–HAM) global atmospheric-aerosol model, and to compare the magnitudes and geographical patterns of the sensitivities and interactive effects derived from observations with those from ICON-HAM. Discrepancies may point to the physics parameterization schemes in ICON-HAM which may need further evaluation of their representativity with respect to relevant processes. This novel explainable machine learning framework can potentially provide insights into parameterization tuning and enhance our knowledge of the complex aerosol-cloud-climate system.

How to cite: Jia, Y., Andersen, H., and Cermak, J.: Comparison between model and observational cloud fraction adjustment using explainable machine learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8451,, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 14 Apr 2024, no comments