Upstream plasma waves and downstream magnetic reconnection at a reforming quasi-parallel shock
- 1University of Science of Technology of China, Hefei, China (qmlu@ustc.edu.cn)
- 2National Space Science Center, Chinese Academy of Sciences
With the help of a two-dimensional (2-D) particle-in-cell (PIC) simulation model, we investigate the long-time evolution of a quasi-parallel shock. Part of upstream ions are reflected by the shock front, and their interactions with the incident ions excite low-frequency magnetosonic waves in the upstream. Detailed analyses have shown that the dominant wave mode is caused by the resonant ion-ion beam instability, and the wavelength can reach tens of the ion inertial lengths. Although these plasma waves are directed toward the upstream in the upstream plasma frame, they are brought by the incident plasma flow toward the shock front, and their amplitude is enhanced during the approaching. The interaction of the upstream plasma waves with the shock leads to the cyclic reformation of the shock front. When crossing the shock front, these large-amplitude plasma waves are compressed and evolve into current sheets in the transition region of the shock. At last, magnetic reconnection occurs in these current sheets, accompanying with the generation of magnetic islands. Simultaneously, there still exist another kind of plasma waves with the wavelength of several ion inertial lengths in the ramp of the shock. The current sheets in the transition region are distorted and broken into several segments when this kind of plasma waves are transmitted into the downstream, where magnetic reconnection and the generated islands have a much smaller size.
How to cite: Lu, Q., Guo, A., Yang, Z., Lu, S., and Wang, R.: Upstream plasma waves and downstream magnetic reconnection at a reforming quasi-parallel shock, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-85, https://doi.org/10.5194/egusphere-egu24-85, 2024.