Greenhouse gas emissions under nanomaterial co-application with reduced fertiliser input
- University of Birmingham, Life and Environmental Sciences, Geography, Earth and Environmental Sciences, United Kingdom of Great Britain – England, Scotland, Wales (jxc1326@student.bham.ac.uk)
With the advent of synthetic nitrogen fertiliser, the proportion of reactive nitrogen (Nr) in terrestrial ecosystems has doubled. While this has enabled high crop productivity, it has also triggered mass environmental effects, with almost half of the applied fertiliser lost into air (in the form of N2O or NH3) as well as nutrient runoff and leaching of nitrates into water bodies. Nanomaterials present an opportunity to improve nutrient use efficiency of crops and minimise agricultural pollution via reducing losses. This study screened engineered nanomaterials, including zeolites and metal oxides, to assess their impact on greenhouse gas (CH4, N2O and CO2) emissions when co-applied with NPK (nitrogen, phosphorus and potassium) fertiliser to grow lettuce (Lactuca sativa). The findings show that there are highly differential emissions from soils with nanomaterial co-application with reduced fertiliser application rates. One of the zeolites used, ZSM-5-15, when co-applied with a reduced dose (50% of RB209 nutrient management guide recommendation) of NPK fertiliser, increased N2O emissions relative to reduced NPK fertiliser alone and negative controls. Another zeolite, BEA-19, had limited effect on either NH3 or N2O volatilization, but did reduce the concentration of ammonium in the leachate. Nitrate leaching gradually rose over the course of the 8-week experiment for full NPK fertiliser dose application, reduced NPK dose and negative control. This pattern was altered by BEA-19, triggering elevated nitrate leaching earlier in the experiment, peaking in week 1 compared to week 4 for other treatments. While nanomaterial treatment was able to increase lettuce biomass accumulation compared to full NPK and negative fertiliser treatments, understanding the impact of nanomaterials on N cycling has proven more complex. The mechanism for N loss from soils triggered by ZSM-5-15 application is unknown, potentially through impact on denitrifying enzymes. My work posits that the earlier release of nitrate from BEA-19 application is due to selective binding of the NPK to the nanomaterial surface. More data on nanomaterial endpoints is pending and may help elucidate the nature of this binding and nutrient release mechanisms.
How to cite: Chadwick, J., Lynch, I., and Ullah, S.: Greenhouse gas emissions under nanomaterial co-application with reduced fertiliser input, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8547, https://doi.org/10.5194/egusphere-egu24-8547, 2024.