Study on Reservoir-caprock Configuration for Carbon Dioxide Sequestration in oil and gas reservoirs
- 1School of Geosciences, China University of Petroleum (East China), Qingdao, China, (1603082956@qq.com)
- 2School of Geosciences, China University of Petroleum (East China), Qingdao, China, (jiangyoulu@upc.edu.cn)
Carbon capture and storage technology is a necessary means to achieve the temperature control goal of 1.5 degrees Celsius under the background of peak carbon dioxide emissions and carbon neutrality. The storage of carbon dioxide in oil and gas reservoirs has the advantages of high safety, large storage capacity, and less additional cost. The reservoir-caprock configuration can provide favorable space for the storage of carbon dioxide geological bodies. To make clear the distribution range of geological bodies suitable for carbon dioxide sequestration, taking the middle-south section of the eastern sag of Liaohe as an example, based on the model of the ratio of mud to ground and caprock effectiveness division, the control factors of caprock sealing were analyzed by entropy weight method combined with TOPSIS method, and the effective thickness of reservoir was determined by clarifying the relationship between reservoir lithology, physical properties, oil content and electricity. The results show that the lower limit of the effective caprock mud-to-ground ratio in the sand-mud interbedding sequence is 70.6%, and the sealing ability of caprock is mainly affected by the thickness of the fault and the thickness of the caprock single layer; The two sets of caprocks in the Shahejie Formation and Dongying Formation are relatively stable, with good fault-caprock configuration sealing, and the fault juxtaposition thickness in the Shahejie Formation is characterized by "thick in the north and thin in the south"; The effective reservoirs of the Dongying Formation are distributed in the whole region, the effective reservoirs of Es1 are distributed in the north of Rongxingtun, and the distribution range is smaller than that of the Dongying Formation, while the effective reservoirs of Es3 are mainly distributed in Huangyure area at the northern end of the study area, and the distribution range is further reduced. According to the reservoir-caprock configuration, carbon dioxide storage types can be divided into three types: shallow storage type, deep storage type, and multi-layer storage type. The lower caprock is well sealed and the lower effective thick reservoir controls the deep enrichment of carbon dioxide; The lower caprock is poorly sealed, and the effective thick reservoir in the middle or upper part controls the multi-layer enrichment of carbon dioxide; The lower caprock is poorly sealed, the upper caprock is well sealed, and the upper effective thick reservoir controls the shallow enrichment of carbon dioxide. The relationship between the effective thickness of the reservoir and the sealing ability of the caprock determines the vertical distribution series of carbon dioxide.
How to cite: li, H. and jiang, Y.: Study on Reservoir-caprock Configuration for Carbon Dioxide Sequestration in oil and gas reservoirs , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-86, https://doi.org/10.5194/egusphere-egu24-86, 2024.