EGU24-8641, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8641
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Joint inversion for Vp, Vs, and Vp/Vs of subduction zone in northern Chile

Zixin Chen1, Haijiang Zhang1, and Lei Gao2
Zixin Chen et al.
  • 1Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China (chenzx23@mail.ustc.edu.cn)
  • 2Chinese Academy of Geological Sciences, Beijing, China (gaoleibo@mail.ustc.edu.cn)

We collected earthquake waveform data recorded by permanent seismic stations in northern Chile from 2014 to 2019 to construct a new earthquake catalog, and integrated them with the previous catalog data. In total, the new catalog consisted of 536342 P and 453920 S arrival times from 52165 earthquakes and 245 stations. We resolved Vp, Vs, and Vp/Vs models and seismic locations for northern Chile by using a new version of double-difference seismic tomography method based on Vp/Vs model consistency constraint (Guo et al., 2018). The new velocity models provide a refined structure of the subducting slab down to 350 km.

The earthquake relocations reveal a distinct double seismic zone in northern Chile, but the gap between the two seismic planes disappears at a depth of approximately 100 km and replaced by a concentration of seismic cluster. Under this intermediate-depth seismic cluster, several isolated small seismic clusters remain. The tomography results indicate a strong correlation between seismicity distribution and high-velocity anomalies. The subducting Nazca Plate presents stripe-like high-velocity anomalies with clear segmentations, potentially related to the weakening at the outer-rise of the trench. Furthermore, our Vp/Vs model indicates that the upper seismic plane exhibits high Vp/Vs anomalies, which may indicate the presence of fluids released from dehydration reactions of various hydrous minerals. In contrast, lower seismic plane and deep seismic clusters are associated with low Vp/Vs anomalies, which could be related to supercritical fluids. Additionally, the enhanced seismicity and velocity anomalies in the region of 21-22ºS along the strike suggest a potential influence of the subduction of the Iquique Ridge of the Nazca Plate.

How to cite: Chen, Z., Zhang, H., and Gao, L.: Joint inversion for Vp, Vs, and Vp/Vs of subduction zone in northern Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8641, https://doi.org/10.5194/egusphere-egu24-8641, 2024.