EGU24-8645, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8645
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mapping Worldwide Ground Deformation in High-Strain Areas with SAR PS/DS Interferometry and Sentinel-1 Imagery

Giorgio Gomba1, Francesco De Zan2, Ramon Brcic1, and Michael Eineder1
Giorgio Gomba et al.
  • 1Deutsches Zentrum für Luft und Raumfahrt, Weßling, Germany (giorgio.gomba@dlr.de)
  • 2delta phi remote sensing GmbH, Gilching, Deutschland (francesco.dezan@delta-phi.eu)

The motivation for this study is to help providing a better understanding of the behavior of the earth's crust in high strain areas. High strain areas are regions of the Earth's crust, associated with tectonic plate boundaries, where the rates of ground deformation are particularly high. These areas are characterized by high seismic activity, making them of significant concern. The ability to estimate ground deformation in these regions is critical for understanding the underlying geological processes and for assessing the potential risk of future seismic events. Interferometric Synthetic Aperture Radar (InSAR) has shown great promise in delivering millimetre-scale ground displacement information over long distances across plate boundaries. In this project, we aim to globally measure ground deformation using the InSAR Persistent and Distributed Scatterer (PS/DS) technique, focusing on the regions where the second invariant of the strain is higher than 3 nanostrain per year.

Due to the large amount of data that has to be processed, we use the high-performance data analytics platform made available within the framework of the Terra_Byte project, a cooperation between the German Aerospace Center (DLR) and the Leibniz Computer Centre (LRZ). This enables us to process large volumes of data efficiently. We use the IWAP processor to apply the PS/DS technique to time-series of seven years of SAR images acquired by the Sentinel-1 mission. To improve the accuracy of our analysis and reduce the influence of ionospheric variations we use CODE total electron contents maps. The impact of solid earth tides (SETs) is limited by using the IERS 2010 convention. We use ECMWF reanalysis data to correct for tropospheric delays, which are the biggest error source and limiting factor for the interferometric performance at large distances. The influence of soil moisture and vegetation growth on distributed scatterers is limited by the full covariance matrix approach used in the interferograms generation. Finally, we calibrate and compare our results with GNSS measurements to show a detailed picture of ground deformation.

The results of this project will be publicly available on a global scale, including: velocity maps, timeseries, line-of-sight projection vectors. The product palette will allow custom calibration or 2D decomposition by the user. Possible applications are: the large coverage and homogeneous processing characteristics of the data could serve as a baseline reference or comparison for other studies. Geoscientists will be able to use the deformation measurements to gain a better understanding of geological processes, with the dense PS/DS measurements filling in the gaps between existing GNSS survey data, contributing to the advancement of scientific knowledge in this field.

How to cite: Gomba, G., De Zan, F., Brcic, R., and Eineder, M.: Mapping Worldwide Ground Deformation in High-Strain Areas with SAR PS/DS Interferometry and Sentinel-1 Imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8645, https://doi.org/10.5194/egusphere-egu24-8645, 2024.