EGU24-8883, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8883
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Structural inheritance and the evolution of an incipient rift: interaction between the Eger Graben and the Elbe Zone, Central Europe

David Ulicny1, Vladimír Cajz1, Karel Mach2, Lenka Špičáková1, Matěj Machek1, Stanislav Čech3, Radomír Grygar4, Jan Mrlina1, and Filip Havlíček1
David Ulicny et al.
  • 1Institute of Geophysics, Academy of Sciences, Praha 4, Czechia (ulicny@ig.cas.cz)
  • 2Severočeské doly, a.s., Doly Bílina, Bílina, Czechia
  • 3Czech Geological Survey, Prague, Czechia
  • 4J. Maluchy 26/4, Ostrava, Czechia

The present-day surface morphology and fabric of the lithosphere of west-central Europe in the foreland of the Alpine orogen have been significantly affected by formation of a system of rifts and associated volcanic domains during the Oligocene and Neogene, known as the European Cenozoic Rift System (ECRIS). In order to better understand the geodynamic causes of formation of ECRIS and its volcanism, it is important to improve the knowledge of chronology of tectonic events in the entire ECRIS, and to test the validity of existing palaeostress interpretations. The Oligo-Miocene Eger Rift, so far the least-studied part of ECRIS, has the potential to bring new clues to some persisting controversies.

The axis of the Eger Rift roughly follows the trend of a major Variscan lithosphere-scale boundary, the Teplá-Barrandian/ Saxothuringian suture (TSS) formed during the collisional phases about 380-320 Ma. Following the Variscan collision, the lithosphere of the Bohemian Massif was affected by formation of a Late Paleozoic extensional basin system which in the western part of the Bohemian Massif largely follows the NE strike of the TSS. Another major structure in the basement underlying the Eger Rift is the WNW-striking Elbe Zone, with main periods of activity during the Paleozoic and Mesozoic through early Cenozoic.

We present a synthesis of presently available structural and stratigraphic data and a resulting first-order interpretation of tectonic evolution of central and eastern Eger Rift. The main data sources were borehole, outcrop, seismic reflection data, targeted field mapping, digital elevation models, and gravity data from both public and industry sources. Several stratigraphic levels (within the Neogene, Cretaceous, and top of Late Palaeozoic) were used as structural datums.

Analysis of fault populations in central and eastern Eger Rift shows that overall, the Late Paleozoic fracturation of the upper crust of the Bohemian Massif was key for localization of the main fault systems of the Eger Rift. This includes dextral shearing within the Elbe Zone that affected the basement structural grain responsible for segmentation of the Eger Rift during the Cenozoic. Changes between oblique and orthogonal extension modes are interpreted from the geometries and temporal relationships of key structures - both in time, likely due to a changing regional paleostress field, and in space, due to different orientations of basement structures between the rift segments.

This research has been supported by the Czech Science Foundation (GAČR) project 22-13980S.

How to cite: Ulicny, D., Cajz, V., Mach, K., Špičáková, L., Machek, M., Čech, S., Grygar, R., Mrlina, J., and Havlíček, F.: Structural inheritance and the evolution of an incipient rift: interaction between the Eger Graben and the Elbe Zone, Central Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8883, https://doi.org/10.5194/egusphere-egu24-8883, 2024.