EGU24-8964, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8964
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Delineation of mine tailings by ambient noise horizontal-to-vertical spectral ratio method

Ayse Kaslilar1, Zbigniew Wilczynski1, Christopher Juhlin1, and Mehrdad Bastani2
Ayse Kaslilar et al.
  • 1Uppsala University, Department of Earth Sciences, Uppsala, Sweden (ayse.kaslilar@geo.uu.se)
  • 2Geological Survey of Sweden, Uppsala, Sweden

The increasing need for mineral resources and critical rare earth elements (REE) due to the transition to clean energy has attracted interest in mine wastes as they may contain significant amounts of REE that were not of interest in the past but are today. Detailed knowledge about the 3D geometry and size of the waste deposits and their mineral content is important to understanding whether waste tailings can serve as a secondary resource, contributing to the energy transition, sustainability, and the circular economy, and promoting recycling.  Geophysical methods can provide information on the geometry, and help to characterize and estimate the size of the mine waste. In the last two decades developments in sensor and computational technology have enabled cost-effective and environmentally friendly seismic ambient noise methods to be widely applied for imaging the subsurface. Among others, one of the ambient noise methods is the horizontal-to-vertical spectral ratio (HVSR) method, which is an efficient technique widely used for site characterization, estimating the thickness of overburden above bedrock, monitoring landslide, and examining the stability of tailing dams.

In this study, ambient noise data and the HVSR method are used to estimate the thickness and delineate the 3D geometry of mine tailings. We use three-component (3C) ambient noise data that we collected with 50m spacing between the sensors and profiles in one of the non-active mine tailings of Nordic Iron Ore in Blötberget, Sweden, which might be a potential resource for REE.  We process the 3C data and obtain the fundamental frequency at each receiver location. Moreover, one-component ambient noise data that we collected along two perpendicular profiles with a receiver spacing of 5m are used to estimate the surface wave velocity. Combining the fundamental frequency and velocity information, we calculate the depth of the contrasting interface. We show our preliminary results obtained from ambient noise data and compare them with the previous results from the radio magnetotelluric measurements conducted by Geological Survey of Sweden.

This work is part of a project supported by the Geological Survey of Sweden. We gratefully acknowledge this support.

How to cite: Kaslilar, A., Wilczynski, Z., Juhlin, C., and Bastani, M.: Delineation of mine tailings by ambient noise horizontal-to-vertical spectral ratio method, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8964, https://doi.org/10.5194/egusphere-egu24-8964, 2024.