EGU24-8992, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8992
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Imaging deep subducted lithosphere beneath the Indian Ocean with seismic source array recordings

Christine Thomas1 and Björn Holger Heyn2
Christine Thomas and Björn Holger Heyn
  • 1Universität Münster, Institut für Geophysik, Münster, Germany (cthom_01@uni-muenster.de)
  • 2Centre for Planetary Habitability (PHAB), Department of Geosciences, University of Oslo, Norway

The D" region, located just above the core-mantle boundary (CMB), is a geologically interesting region that has been imaged using both tomographic and reflection techniques. However, reflection studies often rely on array analysis techniques, and the lack of suitable seismic arrays in the oceans has left large areas of D" unmapped. One notable area, that is currently sparsely sampled, is beneath the Indian Ocean, where ancient subducted lithosphere has been imaged near the CMB in global tomography studies. We take advantage of the long-running history of five GEOSCOPE stations located in the western Indian Ocean and Antarctica, to investigate the possibility of using source arrays to detect P-wave reflections from the discontinuity above the D" layer. Despite restricting the selected earthquakes around Indonesia to a 120 km depth range and implementing several source normalization techniques, source-array stacks (i.e., source vespagrams) were difficult to interpret. We infer that this complication arises from differing earthquake depths, violating the plane wave assumption made when constructing these stacks. Therefore, we extend our method to a source-array scatter imaging method, which we call source migration, that does not rely on travel-times calculated for a plane wave. Using this technique in conjunction with source normalization, we found clear evidence for a D" P-wave reflector at four of the six GEOSCOPE stations considered in the study. The depth of the reflector for our imaged region varies between 190 km above the CMB beneath the Great Australian Bight and 220 to 270 km beneath the Indian Ocean west of Australia. Our determined depth in the northern portion of our study area is consistent with previous studies of D" depths using S-waves. We suggest that our D" reflections are the result of the previously imaged subducted lithosphere in the region and find that this lithosphere likely thins to the southeast. Additionally, our work more broadly indicates that the long-running history of single global seismic stations combined with source array techniques may be utilized to compliment and extend previous work imaging D" using conventional receiver-array techniques.

How to cite: Thomas, C. and Heyn, B. H.: Imaging deep subducted lithosphere beneath the Indian Ocean with seismic source array recordings, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8992, https://doi.org/10.5194/egusphere-egu24-8992, 2024.