EGU24-9250, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-9250
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Seismic images of the continental lithosphere

Jaroslava Plomerová
Jaroslava Plomerová
  • Institute of Geophysics of the Czech Academy of Sciences, Prague, Czech Republic (jpl@ig.cas.cz)

Seismic waves propagating through the Earth sample its structure, carry information about its fabrics and physical characteristics and record its present-day state and evolution. In the past, several velocity discontinuities within the radial Earth, which separate its fundamental regions, were retrieved. The lower mantle-core boundary was named as Gutenberg discontinuity in recognition of the Gutenberg’s discovery of the Earth’s core in 1913. This discontinuity relates to the abrupt decrease in P-velocity and diminishing of S-waves in the liquid core. In present-day terminology, the Gutenberg discontinuity is associated with the bottom of the D’’ layer. An area of low velocities in the Earth’s upper mantle denoted as G-discontinuity, has related to Gutenberg’s name until now. The low velocity zone exists just below the oceanic lithosphere, and its characteristics are often used globally in studies of lithosphere thickness in the view of modern plate tectonics. Gutenberg’s Seismicity of the Earth (1941) became a major influence in later scientists’ efforts to describe the theory of plate tectonics. The accuracy and validity of the Earth models depend on data quality and coverage, i.e., earthquake foci - seismic station ray distribution within the Earth volume studied. Small-sized to large-scale international passive seismic experiments, operated during several recent decades, recorded an unprecedented huge amount of high-quality data, which along with new techniques and computational facilities represent a big step forward in our knowledge of the Earth’s structure. However, many questions still remain unanswered and require further research. Current close international cooperation among seismologists involved in the experiments follow the spirit of Beno Gutenberg’s action as a driving force behind the acceptance of seismology as an international science of earthquake detection and the Earth studies.

We present models of the European lithosphere derived from the propagation of body waves, shear-wave splitting and radial and azimuthal anisotropy of surface waves, including ambient noise. Data for individual studies has been collected from international seismological databases (ISC, EIDA) and from several passive experiments we have organized or participated in. Initial isotropic models are upgraded into anisotropic ones, following the fundamental condition that seismic anisotropy is a 3D phenomenon and thus it has to be evaluated in 3D to get more realistic images of the Earth. We invert/interpret jointly anisotropic parameters of independent observables (directional variations of P-wave travel times, shear-wave splitting parameters) which leads to 3D self-consistent anisotropic models of the continental lithosphere with tilted symmetry axes and characteristic domain-like structure. The individual domains at size from several tenths to several hundreds of kilometers are often sharply bounded and of different thicknesses. We interpret the often sharply bounded domains with systematically oriented dipping fabrics in the continental mantle lithosphere by successive subductions of ancient oceanic plates and their accretions enlarging primordial continent cores. Consequent continental break-ups and assemblages of wandering micro-plates preserve fossil anisotropic fabrics and create patchwork structures of the present-day continents. Supporting arguments for such model exist in petrological and geochemical studies (Babuska and Plomerova, 2020).

How to cite: Plomerová, J.: Seismic images of the continental lithosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9250, https://doi.org/10.5194/egusphere-egu24-9250, 2024.