EGU24-951, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-951
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geochemistry of core sediments from the southeast coast of Bangladesh: Implications for provenance and chemical weathering intensity

H. M. Zakir Hossain1, Anas Al Hossain1, Md. Aminul Islam1, Zhifei Liu2, Mingyang Yu2, and Ce Zheng2
H. M. Zakir Hossain et al.
  • 1Jashore University of Science and Technology, Petroleum and Mining Engineering, Jashore, Bangladesh (zakir_pme@just.edu.bd)
  • 2State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China (lzhifei@tongji.edu.cn)

Geochemical analyses of major oxides, trace, and rare-earth elements (REE) were examined on the ~70 m core sediments collected from the southeast coast of Bangladesh to determine sediment provenance, maturity, and chemical weathering conditions. The sediment samples contained high SiO2 (62-91 wt.%) and low Al2O3 (~5-17 wt.%) contents and showed a marked negative correlation (r = -0.99) with strong linear trends, indicating that SiO2 was mainly controlled by the quartz content rather than aluminosilicates. Substantial depletion of major labile elements (Na2O, CaO, K2O, Ba, and Sr) compared to the upper continental crust (UCC) indicates the destruction of feldspar during chemical weathering in the source area. The chondrite-normalized REE patterns show LREE enrichment (LaN/YbN, 7.61-14.35), nearly flat HREE (GdN/YbN, 1.33-2.25), and marked Eu anomalies (Eu/Eu*, ~0.58-1.40), suggesting an influx of sediments from felsic provenance. Numerous provenance discrimination diagrams and elemental ratios (Th/Sc, La/Sc, Zr/Sc, Cr/Th, Th/Co, Eu/Eu*, and GdN/YbN) show that the core sediments were derived from felsic source rocks mostly granodiorites, rhyolites, and granites. The REE patterns and parameters are very similar throughout the sequence studied, indicating that the overall source composition in the basin remained unchanged. The Index of Compositional Variability (ICV) values of the sediments varied from 0.79 to 1.83, which indicates immature to moderate compositional maturity. The Chemical Index of Alteration (CIA, ~67 to 81), Chemical Index of Weathering (CIW, ~69 to 91), and Plagioclase Index of Alteration (PIA, ~71 to 92) parameters suggest moderate to high chemical weathering intensity in the source area, which was favored and accelerated by the warm and humid climatic conditions. The elemental ratios (V/Cr, Ni/Co, Cu/Zn, and V/V+Ni) suggested oxic to sub-oxic depositional environment for the accumulation of sediments in the studied Bengal coast. However, the variation of weathering patterns and proxies in the core sediments could be influenced by the strength of South Asian monsoon circulation over the Himalaya-Tibetan Plateau.

How to cite: Hossain, H. M. Z., Hossain, A. A., Islam, Md. A., Liu, Z., Yu, M., and Zheng, C.: Geochemistry of core sediments from the southeast coast of Bangladesh: Implications for provenance and chemical weathering intensity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-951, https://doi.org/10.5194/egusphere-egu24-951, 2024.