EGU24-9741, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-9741
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Representing explicit microbial processes enhances methane modeling under oxygen fluctuation

Gangsheng Wang and Shuhao Zhou
Gangsheng Wang and Shuhao Zhou
  • Wuhan University , Wuhan, China (wanggs@ou.edu)

The dynamics of soil carbon (C) emissions along with their biogeochemical and environmental control have garnered increasing attention. However, the role of methane (CH4) in soil organic carbon (SOC) modelling has been relatively underexplored compared to carbon dioxide (CO2), and the omission of microbial processes may prevent us from accurately modelling CH4 dynamics under environmental changes. Here, we incorporated an explicit microbial CH4 module into the Microbial-ENzyme Decomposition (MEND) model and evaluated it against a sub-version with the first-order kinetics (First-order) and the previous MEND (MEND_old) model. We conducted a rigorous calibration and validation of MEND with high-resolution CO2 and CH4 efflux observations across two soil types and five different oxygen (O2) fluctuation conditions. Beyond precisely capturing soil CO2 and CH4 effluxes, the model could also effectively simulate the relative contents of microbial biomass and enzymes. The multi-model comparison further revealed that the inclusion of new processes did not necessarily enhance model performance if microbes were not perceived as explicit state variables. Our results demonstrated that adopting microbial functional groups as drivers of soil CH4 cycle could provide a basis for testing hypotheses on microbially mediated CH4 processes and their responses to environmental changes. With the availability of diverse data and the development of genetic technologies, our modelling framework present here will empower ecologists and governments to perceive and intervene in global warming from underlying biogeochemical mechanisms rather than predictions.

How to cite: Wang, G. and Zhou, S.: Representing explicit microbial processes enhances methane modeling under oxygen fluctuation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9741, https://doi.org/10.5194/egusphere-egu24-9741, 2024.