EGU24-9774, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-9774
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Subaqueous bedform morphology and migration in a mountainous macrotidal estuary

Ruiqing Liu, Heqin Cheng, Lizhi Teng, Zhongda Ren, Jinfeng Chen, Qian Yang, and Heshan Fan
Ruiqing Liu et al.
  • State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China

Abstract: The subaqueous bedforms in mountainous macrotidal estuaries, distinguished by their large tidal range and strong tidal and river flow dynamics, exhibit complex interactions among hydrodynamics, sediment transport, and bedform morphology, setting them apart from river and marine bedforms. However, there is currently a lack of research on the development characteristics and mechanisms of bedforms in such estuaries. To address this gap, field observations were conducted in the Minjiang Estuary of the East China Sea in December 2021 and August 2023, utilizing multibeam echosounders, shallow seismic profilers, and Acoustic Doppler Current Profilers (ADCP). Field measurements, including bedform morphology, surface sediment grain size, and hydrodynamics, were collected during both flood and ebb seasons. The study aims to explore the development characteristics and evolutionary patterns of bedforms in mountainous macrotidal estuaries, using the Minjiang Estuary as a representative case. The results indicate that the surface sediments in the subaqueous delta plain to the delta front channel of the Minjiang Estuary are predominantly composed of gravelly sand, with a median grain size ranging from 12.77 to 724.51 µm. Large compound bedforms are prevalent, with wavelengths ranging from 7.23 to 233 m and heights from 0.1 to 11.42 m. Bedform size is positively correlated with sediment grain size in the respective regions, and bedform morphology is related to sediment composition and water depth. Bedforms in different regions of the Minjiang Estuary exhibit varying degrees of symmetry, with asymmetry being more common, occasionally interspersed with cosinusoidal bedforms exhibiting better symmetry, which correlates with the strength of regional tidal dynamics. This study is of significant importance for understanding and simulating estuarine hydrodynamics and sediment transport.

Keywords: Mountainous Macrotidal Estuary, Minjiang Estuary, Bedform Morphology, Subaqueous Bedforms, Tidal Currents

How to cite: Liu, R., Cheng, H., Teng, L., Ren, Z., Chen, J., Yang, Q., and Fan, H.: Subaqueous bedform morphology and migration in a mountainous macrotidal estuary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9774, https://doi.org/10.5194/egusphere-egu24-9774, 2024.