Triggering of very shallow earthquakes by surface mass removal processes - case study of the 2019 Mw4.9 Le Teil, France earthquake
- 1Geoazur, Valbonne, France (sopaci@geoazur.unice.fr)
- 2Geoazur, Valbonne, France (ampuero@geoazur.unice.fr)
Earthquakes that nucleate at depths shallower than a few km are very rare but pose high near-fault hazard despite moderate magnitudes. Some very shallow earthquakes have been associated with surface mass removal processes, both natural (e.g. glacier melting) and anthropogenic. A notable recent case is the November 11 2019 Mw 4.9 Le Teil, France earthquake. It called strong public attention because of its very shallow depth (slip shallower than 2 km), very strong ground motion (>1 g) affecting the near-fault population, and proximity to nuclear power plants. It has been proposed that this earthquake could have been triggered by mass removal from a large cement quarry located close to the epicenter. Indeed, the estimated Coulomb stress change induced by the quarry activity on the fault is of several 100 kPa. Here, we further evaluate the mechanical viability of the quarry-triggering hypothesis through 3D earthquake cycle simulations.
We consider a dipping fault governed by rate-and-state friction, with velocity-weakening steady-state behavior, and a realistic mass removal history constrained by analyses of aerial optical images across ~180 years of quarry activity. To account for uncertainties about the recurrence time of natural earthquakes on the fault and the timing of the previous natural event, we consider mass-removal loads starting at different times relative to the simulated natural earthquake cycle. Our simulations show that realistic mass removal rates can advance the failure time by thousands of years. Simulations with a constant mass-removal rate but same cumulative removed mass at 180 years produce a similar triggering timing. This indicates that the induced clock advance mostly depends on the cumulative load, rather than on its rate. The dependence on loading rate manifests through the following mechanism: the model with constant rate can trigger slow slip events instead of regular earthquakes, which postpones the next regular earthquake by a long time, whereas the model with realistic loading history (and higher load rates) always triggers regular earthquakes. The quarry's proximity to the fault and the frictional heterogeneity on the fault also play important roles. For example, clock advance is higher if the quarry location is closer to the edge of the velocity-weakening zone and lower in the middle. Also, the model with the classical rate-and-state model shows negligible impact if the quarry is at the top of a steady-state behavior zone and far away from the velocity weakening zone.
While these models confirm the possibility that mass removal can trigger shallow earthquakes on velocity-weakening faults, we will also report on additional simulations that examine whether such triggering can occur on a fault with velocity-strengthening behavior at shallow depth or it requires a more sophisticated fault rheology, such as friction with a transition from velocity-strengthening to velocity-weakening at increasing slip rate. These modeling efforts will be further constrained by ongoing laboratory experiments on representative materials of the fault that ruptured in the Le Teil earthquake.
How to cite: Sopaci, E. and Ampuero, J. P.: Triggering of very shallow earthquakes by surface mass removal processes - case study of the 2019 Mw4.9 Le Teil, France earthquake , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9827, https://doi.org/10.5194/egusphere-egu24-9827, 2024.