EGU24-9839, updated on 08 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geometrical characteristics of buried fault damage zones in the Bohai Basin, eastern China

Nianfa Yang and Zonghu Liao
Nianfa Yang and Zonghu Liao
  • China University of Petroleum, Beijing, China (;

Characterizing the structures of buried faults is inherently challenging due to a lack of data. However, the seismic survey has demonstrated the potential to reveal geometrical features of faults in the subsurface. In this study, we utilized three-dimensional seismic data and its associated attributes of variance, edge detection, and azimuth for investigating the distribution and structural characteristics of the buried faults in the Bohai Basin, eastern China. The results indicate: (1) there are two 7-km NNE strike-slip carbonate faults (F1, F2, in the Figure) dominated in this region, with fault sub-systems of horst and graben, stepped combinations, and "Y"-shaped; (2) F1 fault is approximately 6.5km with a fault damage zone of about 0.75km in width, and F2 fault is about 7.5km with a fault damage zone of 1.0km in width; (3) The width of fault damage zones increases from south to north, with increasing fault displacement. The maximum fault displacements of F1 and F2 are estimated at 420m and 700m, respectively. We argue that fault displacement leads to the growth of fault damage zones, which potentially controls the evolution of fault architecture. The geometrical information from the subsurface may provide crucial insights for understanding the fault mechanisms and associated earthquakes.

Figure 1. (A) Seismic attribute map of edge detection and time structure showing the two carbonate faults (F1, F2); (B) Measured fault displacement and damage zone width along the fault striking direction of F1 and (C) F2.

How to cite: Yang, N. and Liao, Z.: Geometrical characteristics of buried fault damage zones in the Bohai Basin, eastern China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9839,, 2024.