EGU24-9888, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-9888
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Periglacial processes and landforms in the European Alps: From the Last Glacial Maximum via Leonardo da Vinci to the present

Andreas Kellerer-Pirklbauer1, Isabelle Gärtner-Roer2, Xavier Bodin3, and Luca Paro4
Andreas Kellerer-Pirklbauer et al.
  • 1University of Graz, Department of Geography and Regional Science, Cascade - The mountain processes and mountain hazards group, Austria (andreas.kellerer@uni-graz.at)
  • 2Department of Geography, University of Zurich, Zurich, Switzerland (isabelle.roer@geo.uzh.ch)
  • 3Laboratoire EDYTEM, CNRS – Univ. Savoie Mont Blanc, Chambéry, France (xavier.bodin@univ-smb.fr)
  • 4Regional Agency for Environmental Protection (ARPA) of Piemonte – Deptartment of natural and environmental risks – Unit of monitoring and geological studies, Turin, Italy (luca.paro@arpa.piemonte.it)

Periglacial landforms are widespread features in the European Alps, which cover an area of 190,900 km². The mountain range is arcuated in the western part, extend over a length of 1200 km, are up to 280 km wide, and reach their highest elevation at Mont Blanc (4807.8 m a.s.l.) at the French/Italian border. About 19% of the Alps exceed 2000 m and some 52% of the area consists of carbonate rocks at the surface, which is relevant for karstification processes. During the Last Glacial Maximum some 20 ka ago, 55% of the Alps were covered by glaciers whereas the remaining area was impacted by moderate to severe periglacial conditions causing the formation of widespread periglacial landforms still visible today, particularly at the Alpine margin. During the following Late Glacial period terminating with the Younger Dryas period about 11.7 ka ago, previously glaciated areas were reshaped by periglacial processes forming for instance complex rock glacier systems and solifluction landforms which characterize many high-elevated regions in the Alps until today. Nowadays, active periglacial processes are restricted to elevations above 2000 m in the marginal areas and above 2400 m at the central parts of the Alps. Around 11% of the European Alps are in this active periglacial belt, constrained by the potential treeline as the lower limit and the currently glaciated areas (1% of the Alps) as the upper limit. The widespread existence of relict and active periglacial landforms in the Alps inspired research by many scholars and scientists since centuries. Even Leonardo da Vinci made some periglacial-related observations in the late 15th century. Despite this long traditions and comprehensive experiences in periglacial landform research, future periglacial research is still needed and will help to better understand the impact of ongoing climate change on the periglacial reshaping of this remarkable mountain chain. In this contribution we will present a summary of a recently published book chapter dedicated to the European Alps (Kellerer-Pirklbauer et al. 2022), which is part of a book dealing with the periglacial landscapes of Europe (Oliva et al. 2022).

References:

Kellerer-Pirklbauer A, Gärtner-Roer I, Bodin X, Paro L (2022) European Alps. In: Oliva M, Nyvlt D, Fernández-Fernández JM (eds), Periglacial landscapes of Europe. Springer, Cham. 147-224. https://doi.org/10.1007/978-3-031-14895-8_9

Oliva M, Nyvlt D, Fernández-Fernández JM (eds) (2022) Periglacial landscapes of Europe. Springer, Cham. 523 pp. https://doi.org/10.1007/978-3-031-14895-8

How to cite: Kellerer-Pirklbauer, A., Gärtner-Roer, I., Bodin, X., and Paro, L.: Periglacial processes and landforms in the European Alps: From the Last Glacial Maximum via Leonardo da Vinci to the present, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9888, https://doi.org/10.5194/egusphere-egu24-9888, 2024.