EGU24-9933, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-9933
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

An operational model for wind-blown volcanic umbrella clouds

Chris Johnson1, Frank Millward1, and Helen Webster2,3
Chris Johnson et al.
  • 1Department of Mathematics, University of Manchester, Manchester, United Kingdom (chris.johnson@manchester.ac.uk)
  • 2Met Office, Devon, UK
  • 3College of Engineering, Mathematics and Physical Sciences, University of Exeter, Devon, UK

The plume of ash and gas released by large explosive volcanic eruptions rises to its neutral buoyancy level in the atmosphere, then spreads laterally to form an umbrella cloud. Density stratification of the atmosphere generates buoyancy forces in the cloud, which drive the outward spread as an intrusion. Although umbrella clouds are often modelled as circular axisymmetric structures, in practice they are usually influenced quite strongly by the meteorological wind, with spread in the upwind direction halted by the oncoming wind, and different rates of spreading in the downwind and crosswind directions. Here, we present a physically based shallow-layer intrusion model for wind-blown volcanic umbrella clouds, and derive a simple parametrization of non-axisymmetric umbrella cloud spreading based on this shallow-layer model. The simplified parametrization is quick to evaluate and so is suitable for use in operational Volcanic Ash Transport and Dispersion Models (VATDMs) that are used to predict ash hazard operationally. In contrast to previous parametrizations, in which there is assumed to be no interaction between a circular umbrella cloud and the meteorological wind, here the umbrella cloud is influenced by the wind and adopts a shape determined by the balance of buoyant spreading and downwind drag forces. We test our scheme within the UK Met Office 'NAME' dispersion model, and apply it to four diverse case studies of eruptions at Puyehue 2011, Pinatubo 1991, Ulawun 2019, and Calbuco 2015. We demonstrate that buoyant spreading is important even in plumes that are highly wind-blown, and obtain better descriptions of cloud spread and ash distribution than existing parametrizations based on an axisymmetric umbrella cloud dynamics.

How to cite: Johnson, C., Millward, F., and Webster, H.: An operational model for wind-blown volcanic umbrella clouds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9933, https://doi.org/10.5194/egusphere-egu24-9933, 2024.