PS3.1 | Small Bodies and Dust
EDI
Small Bodies and Dust
Co-organized by ST1
Convener: Jiri Pavlu | Co-conveners: Fredrik Leffe JohanssonECSECS, Maria Gritsevich
Orals
| Mon, 15 Apr, 16:15–18:00 (CEST)
 
Room 1.31/32, Tue, 16 Apr, 14:00–15:45 (CEST)
 
Room 0.16
Posters on site
| Attendance Thu, 18 Apr, 10:45–12:30 (CEST) | Display Thu, 18 Apr, 08:30–12:30
 
Hall X3
Orals |
Mon, 16:15
Thu, 10:45
The session convenes researchers investigating various aspects of small celestial bodies and dust in planetary atmospheres and surrounding space. Discussions encompass asteroids, comets, meteoroids, meteors, meteorites, dust (including its behavior, charging, lifting, and settling on planetary surfaces), and more. The session emphasizes the multidisciplinary nature of such studies, incorporating laboratory experiments, numerical simulations, and observations. It provides insights into small bodies' evolutionary and compositional aspects, elucidating their role in shaping space environments. We invite presenters to showcase recent and upcoming space missions, warmly welcome early career scientists, foster collaborative ideas, and encourage the presentation of cross-disciplinary research.

Orals: Mon, 15 Apr | Room 1.31/32

Chairpersons: Jiri Pavlu, Fredrik Leffe Johansson
16:15–16:20
16:20–16:30
|
EGU24-13303
|
On-site presentation
Larry W. Esposito, Joshua P. Elliott, and E. Todd Bradley

Cassini observations of the micrometeoroid bombardment flux, ring mass and fractional pollution constrain the origin and history of Saturn’s rings. In the simplest model, the age of the rings can be estimated by assuming the rings are a closed system with constant bombardment at the current rate. Observations during the Cassini Grand Finale orbits provide some challenges for this assumption. Further, the remote sensing of the rings shows a red slope, with higher pollution at the shortest wavelengths, consistent with reddening due to space weathering of atmosphereless bodies. If processes at the time of the micrometeorite impacts or subsequent chemical and physical weathering can degrade the original pollutants, this means that laboratory spectra are not appropriate to determine the total extrinsic material that has struck the rings over its lifetime. Rosetta data on the dust composition and surface reflectivity of Comet P67 provide our starting point for the composition of the bombarding material. Laboratory results for irradiation of icy outer solar system analogues indicate oxidation of organics and other pollutants over time. It is now generally agreed that the radiolysis of ice by energetic ions, electrons and solar UV photons produces the oxygen, ozone and peroxide seen at many icy satellites. The porosity of ice provides sufficient space for chemical reactions and mobility (Li 2022). The ring particle surfaces are in addition continually gardened by particle collisions and meteoritic impacts. Because of these loss processes, the current fractional pollution provides only a lower limit on the total integrated pollution flux, and thus a lower limit for the ring age. Two independent analyses of Cassini UVIS spectra of Saturn’s rings give fractional pollution in the outer B ring of 2-3%. This provides a lower limit of 400 to 1600 million years for the most opaque parts of Saturn’s B ring, depending on whether we use the maximum or minimum values for the bombardment rate reported by Cassini CDA (Kempf 2023). The A and C rings, as well as other ring structures, may be younger, having formed more recently.

How to cite: Esposito, L. W., Elliott, J. P., and Bradley, E. T.: Space Weathering Provides a Lower Limit on the Age of Saturn’s Rings, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13303, https://doi.org/10.5194/egusphere-egu24-13303, 2024.

16:30–16:50
|
EGU24-8518
|
solicited
|
On-site presentation
David Píša, Jan Souček, Samuel Kočiščák, Andreas Kvammen, Jakub Vaverka, Tomáš Formánek, Ondřej Santolík, Michiko Morooka, Milan Maksimovic, and Arnaud Zaslavsky

Hypervelocity (>1 km/s) dust grains orbiting in the inner heliosphere can collide with a spacecraft and create a plasma cloud that changes electrical conditions in the surrounding plasma. These changes can be detected by the onboard radio and plasma wave receivers acting as efficient dust impact detectors. Estimated dust impact rates depend on the observation time window and they are commonly extrapolated. Our study presents the RPW/TDS Maximum Amplitudes (MAMP) data that continuously monitors signals from up to four RPW antenna configurations (monopole or dipole, and HF Search Coil) onboard the Solar Orbiter satellite. The signal is sampled in the high cadence (2.091 Msps) and stored in a buffer as the absolute maximum amplitude. MAMP values are then provided with a cadence between 32 and 128 sps, giving us a time resolution between 8 and 31 ms. Individual dust impacts detected by the onboard algorithm evaluating 62ms-long waveform snapshots every second are compared with the MAMP observations and show a very good match. After corrections for the high amplitude plasma waves or non-standard operational modes, and together with the TDS Statistics, the MAMP observations are used for the individual dust impact identification and corrected impact rates during the entire Solar Orbiter mission.

How to cite: Píša, D., Souček, J., Kočiščák, S., Kvammen, A., Vaverka, J., Formánek, T., Santolík, O., Morooka, M., Maksimovic, M., and Zaslavsky, A.: Continuous monitoring of dust impacts across the inner heliosphere by the Solar Orbiter RPW/TDS Maximum Amplitudes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8518, https://doi.org/10.5194/egusphere-egu24-8518, 2024.

16:50–17:00
|
EGU24-22216
|
On-site presentation
Geraint Jones, Colin Snodgrass, Aurelie Guilbert-Lepoutre, Jean-Baptiste Vincent, Charlotte Goetz, Elena Martellato, Seiji Sugita, and Kueppers Kueppers

Comet Interceptor is an European Space Agency (ESA) mission in cooperation with the Japan Aerospace Exploration Agency (JAXA). It aims to characterise through a close flyby a long period comet, preferably dynamically new, or an interstellar object. The main spacecraft will be accompanied in its encounter with the target comet’s nucleus by two small probes, one provided by Europe, and the other by Japan. The mission is planned for launch in 2029. Its Science Working Team (SWT) is supported in specific scientific and science operation areas by Working Groups (WGs). These are the Target Identification WG and Comet Environment WG. The latter comprises three sub-WGs, covering the Nucleus, Near-Environment, and Far-Environment. Here, we provide a brief overview of the mission, and present and describe the aims and activities of the working groups. The search is already underway for potential comets to encounter, and preparations are being made for the scientific exploitation of the data from the mission’s three spacecraft.

How to cite: Jones, G., Snodgrass, C., Guilbert-Lepoutre, A., Vincent, J.-B., Goetz, C., Martellato, E., Sugita, S., and Kueppers, K.: Activities of the Comet Interceptor Comet Environment and Target Identification Working Groups, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22216, https://doi.org/10.5194/egusphere-egu24-22216, 2024.

17:00–17:10
|
EGU24-11065
|
ECS
|
On-site presentation
Nico Haslebacher, Nicolas Thomas, and Raphael Marschall

Introduction: Afρ is a measure for the brightness of a cometary coma [1]. In the past, Afρ has been commonly used as a proxy for the activity of comets [2]. In later studies it was found that the brightness of a coma (Afρ) is dominated by the particle size distribution [3] and that Afρ on its own is a poor predictor for the activity of a comet [4]. In this work we use a numerical model of cometary dust environments to get a better understanding of the relationship of Afρ and the particle size distribution and show how spectral ratioing of Afρ could provide constraints for the particle size distributions of comets.

Methods: A numerical dust model is used to calculate the expected Afρ at two different wavelengths for a wide range of different parameters. Specifically, we calculate the ratio Afρ (425 nm) / Afρ (900 nm) in dependence to the power-law index of the particle size distribution. It is implicitly assumed that the particle size distribution follows a simple power-law. We use particles sizes in the range of 0.01 µm to 10 cm and choose  logarithmic particle size bins that are small enough to have a converging result. The scattering properties of each particle size are calculated for three different dust compositions. We use water ice to model bright particles, enstatite to model silicate particles and amorphous carbon to model dark particles. The scattering properties are calculated based on Mie-theory. Further, we studied day-night asymmetries, parameters related to the outflow velocity of the dust and phase angle effects.

Results: We show that the spectral ratio of Afρ modelled at 425 nm and 900 nm correlate with the power-law index of the particle size distribution. Large particle dominated comas can be distinguished from small particle dominated comas. For small particle dominated coma the specral ratio of Afρ can be used to further constrain the power-law index.

Acknowledgments: This work has been carried out within the framework of the National Centre of Competence in Research PlanetS supported by the Swiss National Science Foundation under grants 51NF40_182901 and 51NF40_205606. Additional financial support from the European Space Agency is also acknowledged.

References: [1] A’Hearn, M. F. et. al. (1984), AJ, 89, 579 [2] Weiler, M. et. Al. (2003), A&A, 403, 313 [3] Fink, U. and Rubin, M. (2012), Icarus, 221, 721 [4] Marschall, R. et. al. (2022), A&A, 666, A151

 

How to cite: Haslebacher, N., Thomas, N., and Marschall, R.: Spectral ratioing of Afρ to constrain the particle size distributions of comets, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11065, https://doi.org/10.5194/egusphere-egu24-11065, 2024.

17:10–17:20
|
EGU24-18373
|
ECS
|
On-site presentation
Gabriel Borderes Motta, Daniel Kastinen, Johan Kero, and Maria Gritsevich

Gritsevich et al. (2022) studied the evolution of a dust trail from the massive outburst of comet 17P/Holmes in October 2007. They predicted that ground-based telescopes could observe this dust trail in 2022 and the subsequent observations were successfully conducted. The observations of the dust trail provide a valuable opportunity to study many peculiarities of the comet, including its activity, structure, and characteristics of the released dust particles. In the present work, we study dynamic evolution of the particles after a long period of time. We investigate the potential for a collision with Earth, Moon, and other celestial bodies; instants of high concentration of particles in the dust trail, and how the solar radiation pressure affects the dynamics of the dust. Recently, comet 12P/Pons-Brooks has experienced a series of well-documented outbursts during its current approach to perihelion, making it an exciting case for investigation. We simulate the evolution of dust particles released by the outbursts of comet 12P/Pons-Brooks during 2023. We use the software REBOUND for the simulations, integrating with the IAS15 numerical integrator. We initiate a system with the Sun, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, and the comet itself at the outburst date for the simulation. The results of the simulations are detailed and analyzed throughout the work.

 

References

Maria Gritsevich, Markku Nissinen, Arto Oksanen, Jari Suomela, Elizabeth A Silber, Evolution of the dust trail of comet 17P/Holmes, Monthly Notices of the Royal Astronomical Society, Volume 513, Issue 2, June 2022, Pages 2201–2214, https://doi.org/10.1093/mnras/stac822

How to cite: Borderes Motta, G., Kastinen, D., Kero, J., and Gritsevich, M.: Comet 12P/Pons-Brooks' Dust Fate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18373, https://doi.org/10.5194/egusphere-egu24-18373, 2024.

17:20–17:30
|
EGU24-15837
|
ECS
|
On-site presentation
Stephan Zivithal, Günter Kargl, Wolfgang Macher, Carsten Güttler, Bastian Gundlach, Holger Sierks, and Jürgen Blum

Comet surfaces have a complex morphology on large scales (such as pits, depressions, scarps and faults) as well as on small scales (such as particle size, porosity distribution and roughness of the comet surface). Little is known about the influence especially of small-scale structures on the gas-flow and the ability to lift off dust particles. Focusing on small-scale structures, we simulate diffusion processes applying Fick's law. For the upper and lower boundary of the simulated box, a flat sublimation front with constant pressure below the inactive surface layer and a perfect vacuum on the surface is assumed. By applying periodic boundary conditions in the planar direction, we mimic an infinite surface with periodic inhomogeneity. We performed the simulation with different variations of diffusivity. In one example, the simulation shows that a region of high porosity within a region of low porosity experiences an increase in the flow rate, as would be expected according to Fick's Law. Nevertheless, it also significantly changes the flow rate in the surrounding region due to lateral flows in the vicinity of the high diffusivity region. We analyze the results qualitatively and compare them with 3D Monte Carlo simulations in a similar setting, which shows a general agreement.

In addition, we conduct experiments with a dedicated vacuum-chamber to measure the viscous permeability and Knudsen diffusion of granular materials by applying the binary friction model. The design allows measurements in different gas-flow regimes, with most samples mainly covering the free molecular flow and the transition region. In the last measurement campaign, bi-disperse samples of spherical particles were measured and the results show a good agreement with generalized models depending on the specific surface area of the sample. The current measurement campaign focuses on angular materials and the influence of shape properties on diffusivity. The results show that packings of highly porous hollow cylinders have a lower diffusivity than expected compared to more compact packings of spherical particles. A comparison with Monte Carlo simulations (from [1,2]) of packings of highly porous spherical particles also shows a higher diffusivity compared to the same measurements. Further measurements will show whether a dependence on a particular shape property could explain this discrepancy.

[1] Macher, Wolfgang, et al. "Transmission probability of gas molecules through porous layers at Knudsen diffusion." Journal of Engineering Mathematics 144.1 (2024): 1-26.

[2] Güttler, Carsten, et al. "Simulation and experiment of gas diffusion in a granular bed." Monthly Notices of the Royal Astronomical Society 524.4 (2023): 6114-6123.

How to cite: Zivithal, S., Kargl, G., Macher, W., Güttler, C., Gundlach, B., Sierks, H., and Blum, J.: Studying gas flow on cometary surfaces with diffusivity variations using flow simulations and experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15837, https://doi.org/10.5194/egusphere-egu24-15837, 2024.

17:30–17:40
|
EGU24-4651
|
On-site presentation
Orbit Determination of Near-Earth Asteroids and Impact Efficiency Assessment of Asteroid 2015XF261
(withdrawn)
Yezhi Song
17:40–17:50
|
EGU24-19273
|
On-site presentation
Dmitrii Vavilov and Daniel Hestroffer

Estimating the probability of a collision of asteroids with the Earth is an important task for planetary defense. There are systems that compute impact probabilities of near-Earth asteroids with the Earth on a regular basis: Sentry (Nasa, Jet Propulsion Laboratory) and CLOMON-2 (originally University of Pisa, now ESA). Here we present NEOForCE (Near-Earth Objects Forecast for Collisional Events) a new monitoring system developed at Institut de mécanique céleste et de calcul des éphémérides (IMCCE, Paris Observatory). This system is original and independent. As ephemeris of major planets and the Moon we use INPOP [1]. The asteroids’ orbits and covariance matrices are taken from DynAstVO database [2]. For computing the impact probability we use the Line Of Variation (LOV) sampling method [3] but with significant modifications. The longest axis of the confidence ellipsoid is chosen to be sampled obtaining virtual asteroids. Each virtual asteroid’s orbit is propagated from the time of discovery 100 years ahead with variational equations. Each virtual asteroid is a representative of its small vicinity and we apply the Partial Banana Mapping method (PBM) [5] for each of this vicinity to look for possible collisions. Then the results are combined and the procedure to find explicitly the initial conditions of the collisional trajectory is launched.

The main differences with the existing monitoring systems are: usage of INPOP ephemeris of major planets instead of DE, having our own orbit fitting and propagation procedure of asteroids from DynAstVO, and implementation of Partial Banana Mapping method. Hence the system provides an independent assessment of the impact probability, which in case of risks is crucial.

 

[1] Fienga, A., et al. (2020) INPOP new release: INPOP19a. Astrometry, Earth Rotation, and Reference Systems in the GAIA era. p. 293-297.

[2] Desmars J., et al. (2017) DynAstVO: a Europlanet database of NEA orbits. European Planetary Science Congress. 2017. p. EPSC2017-324.

[3] Milani A., et al. (2005) Nonlinear impact monitoring: line of variation searches for impactors. ICARUS, V. 173, p. 362-384.

[4] Vavilov D.E. (2020) The partial banana mapping: a robust linear method for impact probability estimation. MNRAS, V. 492, p. 4546–4552.

How to cite: Vavilov, D. and Hestroffer, D.: Near-Earth Objects’ Forecast of Collisional Events (NEOForCE). Impact monitoring system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19273, https://doi.org/10.5194/egusphere-egu24-19273, 2024.

17:50–18:00
|
EGU24-19491
|
On-site presentation
Björn Grieger, Julia de León, Hannah Goldberg, Tomas Kohout, Gábor Kovács, Michael Küppers, Balázs Vince Nagy, and Marcel Popescu

On 26 September 2022, NASA's Double Asteroid Redirection Test (DART) mission impacted Dimorphos, the moonlet of near-earth asteroid (65803) Didymos, performing the world's first planetary defence test. ESA's Hera mission will be launched in October 2024 and rendezvous with the Didymos system end of 2026 or beginning of 2027. It will closely investigate the system and in particular the consequences of the DART impact.  

Hera carries the hyperspectral imager Hyperscout-H. Its sensor consists of 2048 x 1088 pixels which are arranged in macro pixel blocks of 5 x 5 pixels. The 25 pixels of each block are covered with filters in 25 different wavelengths where the center response ranges from 657 to 949 nm. Therefore, each of the 2048 x 1088 pixels provides only the brightness information for one wavelength and hence the theoretical 2048 x 1088 x 25 data cube is only sparsely populated. 

A simple straight forward approach to replenish the sparse data cube would be to move a 5 x 5 pixel window with one pixel steps horizotally and vertically over the whole frame and assign the obtained 25 wavelength spectrum to the center pixel of the window. Besides reducing the image resolution to the quite coarse macro pixels, the accuracy of this method is limited by pixel to pixel variations of the spectra and even more by varying albedo and shading effects caused by varying surface inclination. This makes the resultant spectra very noisy. 

In order to retrieve more accurate spectra with higher spatial resolution, we separate the spectrum at each micro pixel into a normalized spectrum and a brightness scaling factor. We assume the normalized spectra to be spatially smooth, but not necessarily the scaled spectra. Ratios of measured values are used to iteratively compute the normalized spectral value from adjacent pixels. After convergence, the spectra are brightness scaled to reproduce the measured values. This approach allows to replenish the complete data cube with full micro pixel resolution. The application to test images shows that spectra are recovered much more accurately than with the direct approach and that only very little spatial detail is lost. 

Having replenished the complete data cube allows us to construct color images at full micro pixel resolution. The three colors are sufficient to capture most of the spatial variation of the spectra of asteroid surfaces and hence the constructed color images provide a concise visualization of the respective full data cubes. 

How to cite: Grieger, B., de León, J., Goldberg, H., Kohout, T., Kovács, G., Küppers, M., Nagy, B. V., and Popescu, M.: Superresolution color images from the sparse data cubes of the Hyperscout-H hyperspectral imager aboard the Hera mission, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19491, https://doi.org/10.5194/egusphere-egu24-19491, 2024.

Orals: Tue, 16 Apr | Room 0.16

Chairpersons: Maria Gritsevich, Fredrik Leffe Johansson
14:00–14:10
|
EGU24-17927
|
ECS
|
On-site presentation
Ethan Burnett, Iosto Fodde, and Fabio Ferrari

Tidal theory in binary asteroids is in a low state of development in comparison to that of planetary satellites. The dissipative processes within binary secondaries are divergent from the processes at work in planetary satellites, and also the evolutionary timescales are drastically shortened. To study the tidal torques and the spin evolution of the smaller secondaries in binary asteroid systems, it is believed to still be possible to apply a viscoelastic theory somewhat analogous to the models used for planetary satellites (see e.g. Murray & Dermott 1999). If this is true, then there should exist body-averaged “bulk” material properties, such as rigidity and viscosity, applicable for these models. Importantly, it should be possible to compute effective k2 (tidal potential Love number) and Q (quality factor) values for these tiny worlds.

Some pioneering works have derived first-order tidal laws for binary asteroids via analytic and semi-analytic methods. Nimmo & Matsuyama (Icarus 2019) derive a friction-driven effective quality factor Q which decreases (i.e. more dissipation) with stronger friction. Goldreich & Sari (The Astrophysical Journal 2009) argue that effective rigidity is dynamically dominant, deriving an important law for effective k2 for asteroids that scales linearly with the asteroid radius. They also argue that effective Q could be quite low for asteroids, lower than prior estimates of Q ~102. By contrast, Efroimsky (The Astronomical Journal 2015) argues that effective viscosity is dominant and rigidity doesn’t matter. Recently, Pou and Nimmo (Icarus 2024) showed that k2/Q values implied by the ages of some binary asteroids are much lower than the values predicted by Goldreich & Sari (2009), suggesting that the theory of the latter is incomplete.

In this work, we follow up on the aforementioned theoretical works with numerical experiments of binary asteroid tidal evolution, which have strong scientific motive to be carried out. This is accomplished using the massive N-body simulation architecture of GRAINS (Ferrari et al, MNRAS 2019), wherein gravitational, contact, and frictional effects are modeled in the interaction of thousands of non-spherical mass elements. We initialize a simplified binary system analogous somewhat to the scenarios employed in Agrusa et al (PSJ, 2022). To facilitate tidal locking, the static moment-of-inertia asymmetry is made sufficiently large, the secondary is initialized in a state of slightly super-synchronous rotation, and inter-element friction is enhanced, if needed, to yield a dissipation timescale in line with our numerical capabilities (a move inspired by the approach of Goldreich, The Astronomical Journal 1966). From our simulation results, we perform the following analysis:

  • A simple regression analysis infers the effective k2/Q from the computed rotational energy dissipation rate, via parallel application of the classical 1D MacDonald tidal dissipation model.
  • Previously derived scaling laws for effective k2 and Q are tested.
  • The accuracy of the MacDonald tidal torque model for binary rubble pile asteroids is tested.
  • With time permitting, if the (unimodal) MacDonald tidal model is shown to be inaccurate, we'll explore computation of an appropriate multimodal tidal potential, as in Darwin-Kaula theory.

How to cite: Burnett, E., Fodde, I., and Ferrari, F.: Numerical inference of viscoelastic properties in tidal models of rubble pile asteroids, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17927, https://doi.org/10.5194/egusphere-egu24-17927, 2024.

14:10–14:20
|
EGU24-9846
|
ECS
|
On-site presentation
Gabriel Caritá, Hauke Hussmann, Antonio Fernando Bertachini de Almeida Prado, Nelson Callegari, Maria Helena Moreira Morais, and Ricardo Egydio de Carvalho

Asteroids are originated by the evolution of the disk in the Solar System and, in general, do not have spherical and symmetrical shapes. The reason for those irregular shapes is the small mass of the bodies, such that gravity is not sufficient to make them reach a spherical shape. Those irregular shapes make the study of spacecraft orbits to investigate those objects  complex. Adding this to the fact that their weak gravitational field allows forces that are usually negligible or of second order  for spacecraft near a massive body (e.g.,  solar radiation pressure) to be comparable to the gravitational forces, provides an interesting and important problem to be studied in terms of astrodynamics. The study of asteroids is important because they carry essential scientific information about the origin and evolution of the Solar System. For all these points, it is important to understand their motion and investigate the motion of a spacecraft close to the asteroid. Asteroids may exist alone or in groups of two or three. Recent observations show that binary asteroids could be even more common than we think. In that sense, the present research focused on studying the orbital evolution of a binary asteroid system with almost equal masses composed of two non-spherical asteroids tidally locked that are close to each other, and the dynamical evolution of spacecraft orbiting the system. Since Keplerian orbital elements are not always a good approach for spacecraft in high mass ratio binary systems, to study this problem, we consider the mathematical models of the planar full two-body-problem for the binary asteroid, and the circular restricted three-body problem for the spacecraft, adding ellipsoidal geometry to represent the non-spherical shapes of the binary in order to find natural stable solutions. We also analyzed the structure of the phase space and the importance of the effect of solar radiation pressure on this dynamics. We studied the dynamics and the effect of the gravitational shape of close binary systems in their mutual orbits, as well as the existence of spacecraft circular and resonant orbits. As an application of this research, we studied the binary system Antiope 90. We found stable, close direct and retrograde orbits for the jacobi constants between -1.1 and -0.5; and internal resonant retrograde orbits within the primary and the secondary for the energy -0.7. The majority of the dynamical structure has survived over 90 days assuming the effects of solar pressure radiation.

How to cite: Caritá, G., Hussmann, H., Prado, A. F. B. D. A., Callegari, N., Morais, M. H. M., and de Carvalho, R. E.: Planar dynamics of non-spherical close tidally locked binaries asteroids , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9846, https://doi.org/10.5194/egusphere-egu24-9846, 2024.

14:20–14:30
|
EGU24-4652
|
ECS
|
On-site presentation
Iosto Fodde and Fabio Ferrari

Current evidence shows that most asteroids are rubble piles, which are defined to be aggregates of loosely consolidated material bound by gravity and likely a small amount of cohesive strength. Rubble-pile asteroids are granular systems, which can be reshaped through external excitation like meteoritic impacts, the YORP effect, and planetary encounters. Universal modelling of granular systems is one of the major unsolved topics in physics, as these systems are chaotic, multi-scale, and highly dependent on the non-linear interactions between its constituent particles. These difficulties are exacerbated as the low gravity invalidates some terrestrial observations and scaling laws.

Most analytical models are based on continuum mechanics, like the Mohr-Coulomb or Drucker–Prager criterion, fitted to specific sets of observations. These models are able to explain certain aspects of the asteroid population well, but are not able to accurately describe all their critical properties and are furthermore not dynamical. On the other hand, numerical simulations have shown a great potential to predict the evolution of these systems, down to properties of their individual fragments. However, their high computational burden and sensitive dependency on initial conditions make it harder to generalise conclusions made from them.

This work tries to bridge the gap between numerical and analytical modelling of rubble pile asteroids, by using the data produced by numerical simulations to derive a set of analytical equations of motion. Machine learning based system identification methods like genetic programming or neural networks have been shown to work well in predicting complex non-linear dynamical systems. However, key properties of good analytical models, like interpretability and generalizability, are often neglected by these methods. For this reason the sparse identification of non-linear dynamics (SINDy) method was developed, which avoids this problem by applying a sequential thresholding least-squares algorithm on a set of mathematical functions to obtain a sparse representation of the dynamics. 

In this work, first a set of time series data is obtained from the numerical code GRAINS, which is an N-body code that takes into account the complex shape of the individual particles, as they interact through self gravity and contact. A set of macroscopic state and environment variables are selected, which can either be physical values like the moments of inertia and/or spin-up rate, or numerically derived optimal coordinates (using e.g. proper orthogonal decomposition). This time series data is then used by SINDy to obtain a symbolic representation of the time derivative of the state variables. The thresholding parameter of SINDy can be tuned to obtain either a simpler model that mainly qualitatively describes the system, or a more complex model that also has a good quantitative performance. These analytical models are then used to obtain various dynamical properties of the systems, e.g. equilibrium points, bifurcations, etc.

This research shows how the data obtained from simulations can be used to obtain a parsimonious model for the dynamics of rubble pile asteroids. These models can further improve our understanding of the origin and evolution of rubble-pile asteroids, and help inform and interpret future observations.

How to cite: Fodde, I. and Ferrari, F.: Discovery of Rubble-Pile Asteroid Dynamics through Sparse Symbolic Regression, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4652, https://doi.org/10.5194/egusphere-egu24-4652, 2024.

14:30–14:40
|
EGU24-3147
|
ECS
|
On-site presentation
Patrick Shober, Jeremie Vaubaillon, Gonzalo Tancredi, Hadrien Devillepoix, Eleanor Sansom, Sophie Deam, Simon Anghel, Francois Colas, and Silvia Martino

Jupiter-family comets (JFCs) originate from the Kuiper belt and scattered disk, characterized by short orbital periods and frequent interactions with Jupiter. Their icy composition and a chaotic transition to the inner solar system result in short dynamic and physical lifetimes. These features make JFCs key subjects for understanding the migration of celestial bodies and possibly the delivery of organic materials to the early Earth. Numerous studies of fireballs have historically posited a substantial contribution of large objects from JFC orbits, suggesting a significant presence of cometary material in the near-Earth environment. However, this prevalent belief necessitates a thorough re-examination, as the physical evolution of comets and the mechanisms governing their disintegration remain subjects of debate. Understanding the population of meteoroids and comets is crucial for evaluating this population's physical breakdown and evolution. Current dust models suggest that fragmentation and disintegration of comets play a significant role in populating the zodiacal cloud. However, the larger centimeter-meter scale debris observed by fireball networks has been shown to resemble more asteroidal sources dynamically, indicating that comets might be breaking down directly only into dust-sized fragments. 

This study extends the scope of existing research by conducting a detailed analysis of both JFCs and comet-like fireball observations, aiming to elucidate the origins and dynamics of objects on JFC-like orbits across varying size scales. Utilizing extensive data from four major fireball networks (DFN, EFN, FRIPON, MORP) and ephemeris data of JFCs, the research comprises 646 fireball orbits and 661 JFCs. Methods include orbital stability analysis over 10,000 years, Lyapunov lifetime estimation, debiased NEO model source region estimation, meteorite fall identification, and meteor shower analysis.

The analysis reveals that most meteoroids on JFC-like orbits do not align dynamically with typical JFCs. Instead, they predominantly originate from stable orbits in the outer main asteroid belt, challenging the notion that centimeter-to-meter scale meteoroids on JFC-like orbits primarily derive from JFCs. Furthermore, a subset of 24 JFCs in near-Earth orbits displayed unexpected orbital stability, suggesting a presence of asteroidal interlopers from the outer main belt within the JFC population.

Our study demonstrates significant dynamical differences between kilometer-scale JFCs and smaller meteoroids. While the larger JFCs frequently encounter Jupiter and have dynamic, transient orbits, the smaller meteoroids detected by fireball networks originate primarily from stable orbits, indicating a predominant influence of asteroidal material from the outer main belt. This finding challenges conventional assumptions about the origins of JFC-like debris observed on Earth and highlights the complexity and diversity of the small-body environment in our solar system.

 

How to cite: Shober, P., Vaubaillon, J., Tancredi, G., Devillepoix, H., Sansom, E., Deam, S., Anghel, S., Colas, F., and Martino, S.: Unraveling the Origins of JFC-like Bodies: A Comparative Study of Comets and Meteoroids, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3147, https://doi.org/10.5194/egusphere-egu24-3147, 2024.

14:40–15:00
|
EGU24-18828
|
ECS
|
solicited
|
On-site presentation
Daniel Kastinen and Johan Kero

We have a long-term goal of creating a holistic and cross-disciplinary approach to meteor research where we connect together topics such as meteor measurements, ablation simulations, meteoroid stream simulations, and sensor simulations. Here, we present the most recent work on developing an automated radar data analysis algorithm able to calculate probability distributions of meteor- and meteoroid parameters for head echoes measured using interferometric high-power large-aperture radars. The algorithm utilizes direct Monte Carlo simulations of uncertainties, with Bayesian Markov-chain Monte Carlo estimation of meteor model parameters. The algorithm also employs N-body propagation of distributions to perform orbit determination, estimating the galactic background noise temperature for absolute-calibration and an statistical approach using many high signal-to-noise ratio meteors for phase calibration. This analysis algorithm has been applied to data from the Middle and Upper atmosphere (MU) radar in Shigaraki, Japan. As a first case study, we have re-analysed a part of the MU radar meteor head echo data set collected during 2009-2010. As a result we have confirmed the existence of a rare high-altitude radar meteor population with initial altitudes reaching up to ~150 km. Out of the total amount of 106 000 events, only 74 had an initial altitude >130 km, while four of those had an initial altitude >145 km.

How to cite: Kastinen, D. and Kero, J.: High-altitude radar meteors detected using a new analysis algorithm for interferometric meteor head echoes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18828, https://doi.org/10.5194/egusphere-egu24-18828, 2024.

15:00–15:10
|
EGU24-14995
|
ECS
|
On-site presentation
Aisha Alowais, Munya Alkhalifa, Salma Subhi, and Ilias Fernini

This study addresses the challenge of visually identifying meteorites from terrestrial rocks, traditionally a task for experts followed by chemical analysis. We propose a transformative approach using computer vision and machine learning, employing YOLO (You Only Look Once) object detection algorithms (versions 5, 6, 7, and 8), to overcome the bottleneck in expert availability for instantaneous classification. Leveraging a curated selection from the Sharjah Academy for Astronomy, Space Sciences, and Technology (SAASST) unique meteorite collection, we aim to differentiate meteorites from terrestrial rocks based on their surface features and characteristics. The collection comprises a diverse assemblage of approximately 8,000 objects such as iron meteorites, Martian meteorites, tektites, fulgurites, and more. Our methodology includes a comparative analysis of YOLO versions, focusing on precision, recall, and F1 scores to assess each algorithm's adaptability to the unique features of meteoritic material. Preliminary results indicate YOLOv5 as the most efficient compared to its previous versions, achieving a maximum mAP of 0.995 and correctly classifying 93% of test samples. This study aims to determine the optimal YOLO version for enhancing the accuracy and efficiency of meteorite classification. In addition, the selected optimal model will be deployed on a Jetson Nano processor aboard a drone, significantly enhancing onsite meteorite detection capabilities.

How to cite: Alowais, A., Alkhalifa, M., Subhi, S., and Fernini, I.: Advanced Meteorite Identification through YOLO Object Detection Algorithms, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14995, https://doi.org/10.5194/egusphere-egu24-14995, 2024.

15:10–15:20
|
EGU24-2750
|
ECS
|
Virtual presentation
Salma Subhi and Aisha Alowais

This research aims to investigate iron meteorites samples, in terms of their elemental composition, distinguished structure, and their role in enhancing our understanding of the early solar system astrophysical processes. Iron meteorites represent a distinctive category of extraterrestrial materials, provide valuable insights into the formation and composition of asteroids, and the historical evolution of the early solar system around 4.6 billion years ago. Physical tests, including magnetism, fusion crust, density, and the window test, were performed on 140 samples from 2017 to 2023, with 161 analyses being carried out.  In addition to that, the study sheds light on the metallic phases of an oriented intergrowth of kamacite and taenite bands, revealing their occurrence in a unique Widmanstatten pattern. This pattern is visible on the studied samples that have been cut, polished, and etched with a weak, nitric acid. This remarkable pattern provides essential information for unraveling the thermal and cooling histories of these celestial bodies. Advanced analytical techniques such as X-ray fluorescence (XRF), and X-ray diffraction (XRD), were employed to identify the mineralogy and chemical composition of a diverse array of specimens. Iron-nickel minerals such as Kamacite are commonly found in the studied samples as well as the presence of troilite (FeS) inclusions, and traces of other elements. Of the 140 samples, three samples from different countries were identified as iron meteorites, allowing for a nuanced exploration of their unique characteristics. The chemical composition and mineralogy of the samples, revealed by the mentioned techniques, lead us to conclude that these samples formed at the core of asteroids or fragmented planets. This research contributes significantly to the UAE’s planetary science program and enriches meteoritic studies for university students and researchers in this field.

How to cite: Subhi, S. and Alowais, A.: The Mineralogy and Unique Widmanstatten Pattern in Iron Meteorites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2750, https://doi.org/10.5194/egusphere-egu24-2750, 2024.

15:20–15:30
|
EGU24-20327
|
On-site presentation
Chrysa Avdellidou, Marco Delbo, David Nesvorny, Kevin Walsh, and Alessandro Morbidelli

The identification of meteorite parent bodies provides the context for understanding planetesimal formation and evolution as well as the key solar system dynamical events they have witnessed. We identified that the family of asteroid fragments whose largest member is asteroid (161) Athor is the unique source of the rare EL enstatite chondrite meteorites (Avdellidou et al. 2022), the closest meteorites to Earth in terms of their isotopic ratios. The Athor family was created by the collisional fragmentation of a parent body 3 Gyr ago in the inner main belt (Delbo et al. 2019), however the diameter of the Athor family progenitor was much smaller than the putative size of the EL original planetesimal (Triellof et a. 2022). Therefore, we deduced that the EL planetesimal that accreted in the terrestrial planet region underwent a first catastrophic collision in that region, and one of its fragments suffered a more recent catastrophic collision in the main belt, generating the current source of the EL meteorites. 

We investigated the possible ways that could have brought the Athor family progenitor in its current position in the inner main belt. To do so, we used an interdisciplinary methodology where we combined laboratory meteorite thermochronometric data, thermal modelling, and dynamical simulations. 

We showed that planetesimal fragments from the terrestrial zone must have been implanted into the main asteroid belt at least 60 Myr after the beginning of the solar system. We concluded that the giant planet instability is the only dynamical process that can enable such implantation so late in the solar system timeline. 

Acknowledgements. We acknowledge support from the ANR ORIGINS (ANR- 18-CE31-0014). This work is based on data provided by the Minor Planet Physical Properties Catalogue (MP3C) of the Observatoire de la Côte d’Azur (mp3c.oca.eu).

References:

Avdellidou, Delbo, A. Morbidelli, Walsh, Munaibari, Bourdelle de Micas, Devogèle, Fornasier, Gounelle, & van Belle. Athor asteroid family as the source of the EL enstatite meteorites, 2022, A&A, 665, id.L9, 13 pp.

Delbo, Avdellidou, & Morbidelli, Ancient and primordial collisional families as the main sources of X-type asteroids of the inner main belt, 2019, A&A, 624, A69 

Trieloff, Hopp & Gail. Evolution of the parent body of enstatite (EL) chondrites, 2022, Icarus, 373, 114762

How to cite: Avdellidou, C., Delbo, M., Nesvorny, D., Walsh, K., and Morbidelli, A.: Enstatite chondrite meteorites date the giant planet instability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20327, https://doi.org/10.5194/egusphere-egu24-20327, 2024.

15:30–15:40
|
EGU24-1027
|
ECS
|
On-site presentation
Simon Anghel, Mirel Birlan, and Dan-Alin Nedelcu

Cosmic objects, predominantly small meteoroids, frequently interact with Earth's atmosphere, and often go undetected due to their small size. Thus, to better understand the nature of these objects, we need to deploy networks of detectors which track their atmospheric disintegration [1]. This study delves into techniques for measuring the pre-atmospheric mass of meteoroids with known trajectories, some of which were the subject of successful meteorite recovery campaigns. Among the studied methods, we found that the radiated light of the meteoroid disintegration is the most reliable method of estimating its kinetic energy and pre-atmospheric mass [2]. This relation in combination with currently expanding fireball networks [3] can be used to calibrate other methods of estimating the objects mass (e.g. radio, infrasound). Ultimately, by constraining the size and frequency of small meteoroids, we can make inferences about the formation, evolution, and distribution of small objects and debris in the Solar System.

 

References:

[1] Colas F. et al. (2020) Astronomy & Astrophysics 644:A53.  [2] Anghel S. et al. (2021) Monthly Notices of the Royal Astronomical Society 508:571. [3] Vida D. et al. (2021) Monthly Notices of the Royal Astronomical Society 506:5046.

 

How to cite: Anghel, S., Birlan, M., and Nedelcu, D.-A.: Constraining the mass of meteoroids entering the atmosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1027, https://doi.org/10.5194/egusphere-egu24-1027, 2024.

15:40–15:45

Posters on site: Thu, 18 Apr, 10:45–12:30 | Hall X3

Display time: Thu, 18 Apr 08:30–Thu, 18 Apr 12:30
Chairpersons: Jiri Pavlu, Maria Gritsevich, Fredrik Leffe Johansson
X3.106
|
EGU24-15462
|
ECS
Lucie Smrčinová, Gunther Kletetschka, Richard Štorc, Eva Švecová, Viktor Goliáš, and Daniel Vondrák

The Tunguska airburst occurred on June 30, 1908 and it was most likely caused by the impact of the Tunguska cosmic body (TCB). It is not clear what the origin of the TCB was as no impact craters or possible body remains have been found to date. We studied the possible molten fragments of the TCB found in lacustine sediments of Zapovednoe Lake, a water body which is located ~60 km west from the airburst epicentre. Lake sediment cores which were retrieved from the lake contained an event layer dated to 1908–1910 CE. This layer included microscopical molten fragments and anomalous composition.

 

Three short cores (ZP1, ZP2, ZP3) were extracted in the central part of Zapovednoe Lake using a Kajak gravity corer. We used an X-ray fluorescence spectroscopy (XRF) and Scanning Electron Microscopy (SEM) for lake sediment characterization. Magnetic spherules (MSPs) and other magnetic grains were extracted from ZP1 by standard magnetic separation technique and all MSPs were identified with SEM and characterized using elemental microanalysis. We performed XRF analyses of 2 or 5 mm thick slices of the sediment cores and evaluated the concentrations and ratios of individual elements. Sediment samples of ZP2 were used for core dating, using gamma spectrometry for the specific activity of 210Pb, 137Cs, and 226Ra isotopes similar to the record from nearby Suzdalevo Lake.

 

Radioisotope activities revealed the age consistent with the year 1908 CE. The gamma spectrometry results were in good agreement with the XRF measurements, where the event layer had increased concentrations of lithogenic elements, such as Mg, Al, Si, S, K, Ca, Ti, Fe, Cu and Mn. The SEM analysis revealed that molten fragments were indeed found among the potential MSPs extracted from the event layer and adjacent layers. These spherical melts were rich in iron and most of them were found at depth corresponding to the event layer. Only a small portion of MSPs was found in the adjacent layers.

 

Our results revealed the presence of the TCB airburst event layer. The anomalous event layer resulted from increased erosion in the Zapovednoe Lake catchment. However, massive tree falls and subsequent wildfires from the airburst likely contributed to the anomalous elemental composition of the lake sediment as well. We found for the first time in lake sediments preserved MSPs which come from the melts produced by the TCB airburst and may contain an extraterrestrial material.

How to cite: Smrčinová, L., Kletetschka, G., Štorc, R., Švecová, E., Goliáš, V., and Vondrák, D.: Lake Zapovednoe's Molten Fragments of Tunguska Airburst in 1908, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15462, https://doi.org/10.5194/egusphere-egu24-15462, 2024.

X3.107
|
EGU24-9663
|
ECS
Tianhang Chen, Jiansen He, Ziqi Wu, and Rui Zhuo

The interplanetary dust, together with solar wind plasma, forms the space environment of the inner heliosphere. There are two main particle populations of dust, α-meteoroids in bound orbits with micron size and β-meteoroids in hyperbolic orbits with sub-micron and nano size. Collisions between dust particles and dynamical evolution of their orbits greatly shape the grain size and heliocentric distance distributions of dust cloud, yet the specific mechanism still remains unknown. After Parker Solar Probe (PSP) successfully performed more than 10 encounter missions, plenty of dust impact events have been recognized, providing a glimpse of the complex. In this work, we analyze the geometry feature of streaks captured by the Wide-field Imager for Parker Solar Probe (WISPR) and try to locate the impact origins. In addition, we translate the results of streak storms in WISPR images to dust impact rates so as to compare with those recorded by the PSP FIELDS Experiment (FIELDS). We find there is evidence for the α-meteoroids impact. The debris products are directly observed by WISPR. We also find that the dust impact rates determined by the two methods are in good agreement. A pure α-meteoroid model is used to fit the observed impact rates within about 0.3 AU (~67 solar radii) and the fit is pretty well, especially for the rates near perihelion of PSP. Based on these results, we suggest that α-meteoroids can take a significant proportion of zodiacal dust near the Sun and this may lead to a different size distribution of dust cloud and a different mechanism of meteoritic evolution from what they are observed as at 1 AU.

How to cite: Chen, T., He, J., Wu, Z., and Zhuo, R.: Massive Micron Meteoroids in the near-Sun Space as Observed by Parker Solar Probe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9663, https://doi.org/10.5194/egusphere-egu24-9663, 2024.

X3.108
|
EGU24-8629
|
ECS
Kathrin Markus, Gabriele Arnold, Lyuba Moroz, Daniela Henckel, and Harald Hiesinger

2867 Šteins is a main belt asteroid and was a fly-by target of ESA’s Rosetta mission [1]. It has been previously studied by ground-based observations (e.g., [2,3,4,5,6,7]). It has been classified as an E[II]-type asteroid. E-type asteroids are characterized by flat or slightly reddish and featureless reflectance spectra in the VIS and NIR and high geometric albedos and are generally associated with aubrites, enstatite achondrites [8]. E[II]-type asteroids additionally show an absorption band at 0.49 µm, which has been attributed to oldhamite [9]. The depth of the absorption band at 0.49 µm in Šteins’ spectra has been reported to be 9-13 % [3,5,6,7]. Oldhamite usually only occurs as an accessory phase while the abundance required to produce the absorption band is much higher.

We present 0.3 to 16 µm reflectance spectra of synthetic enstatite (Mg2Si2O6), synthetic oldhamite (CaS), and of their mixtures for comparison with spectra of E[II]-type asteroids such as Šteins, and investigate the spectral behavior of the mixtures with respect to their oldhamite content.

All reflectance spectra were collected using a Bruker Vertex 80v FTIR spectrometer at the Planetary Spectroscopy Laboratory (PSL) of the Institute of Planetary Research at DLR, Berlin [10]. The synthesis of the enstatite sample with the composition En99.6Fs0.0Wo0.4 has been described in [11]. The oldhamite sample was purchased from abcr GmbH. Mixtures containing 1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90 vol% oldhamite were prepared.

The spectrum of synthetic oldhamite shows an absorption band at 0.41 µm with a relative depth of 11.4 % instead of the absorption band at 0.49 µm. This band is visible in the spectra of all mixtures, even in the spectrum of the mixture with only 1 vol% oldhamite. In the MIR, the spectra with ≤10 vol% oldhamite are very similar to the spectrum of the pure enstatite and are generally dominated by the Christiansen feature and the Reststrahlen bands. The pure oldhamite is significantly brighter than the enstatite spectrum in the MIR. Changes in the band depth and reflectance do not occur as a single trend, but follow two distinct trends. One for mixtures with ≤10 vol% of oldhamite where changes occur rapidly and another trend for mixtures with ≥20 vol% of oldhamite where changes occur more slowly.

The differences in the oldhamite absorption band do not allow for an estimation of the oldhamite content on Šteins but an overall comparison between the laboratory spectra and Earth-based spectra of Šteins gives an upper limit for the oldhamite content on the surface of Šteins of 40 vol%. 

[1] Keller et al. (2010) Science, 327, 190-193. [2] Barucci et al. (2005) A&A, 430, 313-317. [3] Nedelcu et al. (2007) A&A, 473, L33-L36. [4] Dotto et al. (2009) A&A, 494, L29-L32. [5] Fornasier et al.  2007) A&A, 474, L29-L32. [6] Fornasier et al. (2008) Icarus 196, 119-134. [7] Weissman et al. (2008) Met. Planet. Sci., 43, 905-914. [8] Gaffey et al.  1993) Meteoritics 28, 161-187. [9] Burbine et al. (2002) Met. Planet. Sci., 37, 1233-1244. [10] Maturilli and Helbert. (2019) LPSC, 1846. [11] Markus et al. (2018) Planet. Space Sci., 159, 43-55.

How to cite: Markus, K., Arnold, G., Moroz, L., Henckel, D., and Hiesinger, H.: Laboratory reflectance spectra of enstatite and oldhamite mixtures for comparison with Earth-based reflectance spectra of asteroid 2867 Šteins, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8629, https://doi.org/10.5194/egusphere-egu24-8629, 2024.

X3.109
|
EGU24-6055
|
ECS
|
Marjorie Galinier, Marco Delbo, Chrysa Avdellidou, and Laurent Galluccio

It is understood that large asteroids that were (partially) melted by the heat produced by the decay of radioactive elements at the beginning of our Solar System, differentiated into layers of distinct compositions: an iron core, an olivine-rich mantle and a basaltic crust (Šrámek et al. 2012; Kruijer et al. 2014; Elkins-Tanton & Weiss 2017). Traces of material corresponding to each of these layers have been identified by studying the composition of asteroids in the current main asteroid belt. In addition, the collisional break-up of a differentiated asteroid is expected to produce fragments of different compositions representative of each layer. However, no family with a clear abundance of olivine-rich mantle-like asteroids has been found to date (DeMeo et al. 2019). There is a scarcity of olivine-rich asteroids in the main belt compared to other compositions, known as the ’missing mantle problem’. DeMeo et al. (2019) states that, up to now, there is no statistical concentration of olivine-rich objects in any asteroid family, and that these objects are evenly distributed throughout the main belt.

Using the Gaia DR3 dataset, which contains more than 60 000 Solar System small bodies with reflectance spectra in the visible wavelength range (Gaia Collaboration et al. 2023), we analysed the collisional families of Nesvorny et al. (2015) to search for a potential concentration of olivine-rich asteroids in any family. This composition corresponds to the A-type spectroscopic class in several taxonomic schemes (Bus & Binzel 2002; DeMeo et al. 2009; Mahlke et al. 2022). We found from the study of literature data that the family (36256) 1999 XT17 (FIN 629 in Nesvorny et al. 2015) was the most probable to show a concentration of potential olivine-rich objects. This family is located in the ’pristine zone’ of the main belt (Brož et al. 2013), and it contains 58 members in Nesvorny et al. (2015), 15 of which show a spectrum in the Gaia DR3 dataset.

We classified these 15 members with a χ2 procedure, using a combination of their Gaia DR3 spectra and their literature data, when available. We used the Bus-DeMeo (DeMeo et al. 2009) taxonomic templates to perform this classification, following the methods of Avdellidou et al. (2022). We obtained 12 objects classified as A-types out of the 15. We analysed the spectra of these objects and their position in the proper orbital elements space, and we concluded that a cluster of objects within the collisional (36256) 1999 XT17 family might show homogeneous olivine-rich compositions. This cluster could have once been part of a completely or partially-differentiated body, or could have been formed from nebular processes.

We will present the implications of our findings, including the possibility that despite being rare, A-type asteroids might be better revealed by large-scale spectroscopic surveys, such as ESA Gaia DR3/DR4 and the future NASA’s SPHEREx mission.

How to cite: Galinier, M., Delbo, M., Avdellidou, C., and Galluccio, L.: Searching for a concentration of olivine-rich bodies in asteroid collisional families in the main belt, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6055, https://doi.org/10.5194/egusphere-egu24-6055, 2024.

X3.110
|
EGU24-7979
Alessandra Migliorini, Cristian Carli, Enrico Bruschini, Tiberio Cuppone, Stefania Stefani, Giovanni Pratesi, Alice Stephan, Fiorangela La Forgia, and Monica Lazzarin

The Didymos-Dimorphos binary system, target of the DART mission that successfully impacted the small moon Dimorphos in September 2022, is classified as an S-type asteroid. It shows spectral properties that well fit with the regions that are closer to high olivine abundances in the Band Area Ratio (B.A.R.) versus Band Center at 1 μm (BCI) plane. Further investigation of the Didymos-Dimorphos system will be performed with the HERA mission, to be launched in October 2024. S-type asteroids are characterized by spectral properties that span from low-Ca pyroxene, up to high-Ca pyroxene and olivine content, with possible different abundances of those phases. Different potential types of meteorites can overlap this region as suggested in different works. High interest is generally attributed to those objects with spectral properties that are in between pyroxene and olivine composition to better understand the potential detection limit of olivine and so clarify the olivine-paradox. Here, we investigate the spectral properties of 12 brachinites and ungrouped achondrites brachinite-like (UBAs), that have olivine abundance between 57% and 94% (and fayalite, Fa, between 17.5% and 34%) with some minor variation in mineral association, abundance, and composition. We study the Visible to Near Infrared (VNIR) reflectance properties to evidence how they change in a spectral range suitable to investigate S-types and compare with Didymos spectral properties. In the VNIR spectral range these samples clearly show a systematic trend between the BCI and the B.A.R. that correlate with the olivine abundance and slightly with iron content on olivine. In fact, meteorites with high olivine amounts but a very low Fa content (i.e. low iron) have positions of the absorptions coherent with the associated pyroxene. Clearly the samples investigated in this work moved from the portion of S (III) type with higher BCI up to the region defined by the S (I) type as defined by Gaffey et al. (1993), with VNIR mainly dominated by olivine. We can notice how Didymos nicely fit within this domain defined by brachinites-UBAs and it is slightly out from the OC boot defined by the S (IV) type.

This research was supported by ASI-INAF n.2018-16-HH.0 (Ol-BODIES project) and by ASI (agreement n. 2022-8-HH.0) for ESA’s Hera mission.

How to cite: Migliorini, A., Carli, C., Bruschini, E., Cuppone, T., Stefani, S., Pratesi, G., Stephan, A., La Forgia, F., and Lazzarin, M.: VNIR Spectral comparison between S-Type asteroids and brachinites and ungrouped brachinites-like, in support of the HERA mission, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7979, https://doi.org/10.5194/egusphere-egu24-7979, 2024.

X3.111
|
EGU24-12996
|
ECS
|
Cem Berk Senel, Ozgur Karatekin, Robert Luther, Grégoire Henry, and Philippe Claeys

Impacts are commonplace in our Solar System, constituting one of the key mechanisms that regulate the evolution of asteroids and comets. From small-scale Martian meteorites to large biosphere-forming collisions, e.g., the Chicxulub catastrophe at the end of the Cretaceous Period, impact events are essential to understanding the dynamic history of planetary bodies. In recent years, asteroid missions have made major advancements in characterizing the Near-Earth Objects (NEOs), from JAXA's Hayabusa2 sample-return mission on asteroid Ryugu to NASA’s recent DART space mission that performed the first kinetic deflection on asteroid Dimorphos [1]. The upcoming Hera mission by the European Space Agency (ESA) will characterize the DART impact during a rendezvous with Dimorphos in 2026. Meanwhile, numerical simulations have studied the potential impact cratering and ejecta plume outcomes in response to the DART-scale impactor [2]. Yet, interior features of near-Earth asteroids remain unknown. Understanding what lies inside Dimorphos, various interior scenarios are tested by combining shock physics modeling with the outputs of ejecta observations. The observed ejecta outcome makes it possible to groundtruth modeled ejecta. Therefore, a series of hypervelocity impact simulations are performed through the iSALE2D shock physics code [3-5], incorporating recent mechanical and material parameters [6,7]. Additionally, the DART spacecraft is approximated to be a porous aluminum sphere. The impactor vertically collides at a speed of 6.145 km/s, with Dimorphos taken as an axisymmetric ellipsoid. We test the DART impact within the low-to-intermediate strength regime (1 Pa - 1 kPa) with a wide porosity range (10 - 50%) for a homogeneous interior. This process is iterated for heterogeneous interiors consisting of multiple weak or strong inner layering with or without core formation and boulders. The model results provide new predictions for the plausible cratering formation, thus key insights into the interior of Dimorphos.
References
[1] Daly et al. (2023). Nature, 616(7957), 443-447.
[2] Stickle et al. (2022). The Planetary science journal, 3(11), 248.
[3] Amsden et al. (1980). LANL Report, LA-8095:101p., New Mexico.
[4] Collins et al. (2004). Meteoritics & Planetary Science, 39(2), 217-231.
[5]​​ Wünnemann et al. (2006). Icarus, 180(2), 514-527.
[6] Luther et al. (2022). The Planetary science journal, 3(10), 227.
[7] Raducan et al. (2022). The Planetary science journal, 3(6), 128.

How to cite: Senel, C. B., Karatekin, O., Luther, R., Henry, G., and Claeys, P.: Simulating NASA DART impact: Insights into the interior of asteroid Dimorphos, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12996, https://doi.org/10.5194/egusphere-egu24-12996, 2024.

X3.112
|
EGU24-12458
|
ECS
Xuanyu Hu and Thomas Andert

An increasing number of small extraterrestrial objects in the Solar System are found to have bilobed shapes, which could have resulted from the merger of two independently formed bodies. It is both natural and justified to treat the lobes separately to account for, or discern, any potential difference between them (Andert, et al., 2015). Gravity provides a crucial constraint on the interior mass distribution of the body and is among the key scientific objectives in most space missions. Most often, the gravitational field is modeled as a spherical harmonic (SH) series, whose coefficients are then used along with other constraints to interpret the interior structure.

In this study, a double harmonic-series approach for the bilobed bodies is presented. Namely, a harmonic series is established for each lobe to facilitate the investigation of their interior structures separately. The focus of the analysis is on comet 67P/Churyumov-Gerasimenko, the rendezvous target of the Rosetta mission with an exemplary bilobed shape and variable gravity field (Sierks et al. 2015; Pätzold et al. 2016, 2019). We employ the ellipsoidal harmonic (EH) series, whose coefficients are fully analogous to those of the SH and whose reference surfaces fit more closely the triaxial shapes of the individual lobes (Hu 2016).

We develop the double EH model for 67P via simulations and assess the model performance around the body. Additionally, we discuss the equivalence of the double EH model to the SH model as well as the conditions for direct model transformation from the latter. We revisit the physical meaning of the EH coefficients and demonstrate how their known relationship to the body's mass density moments can be leveraged to interpret different mass distributions of the comet. Importantly, there should be no restriction on the applicability of the method to other bilobed objects.

 

Reference

Andert, T., et al. (2015), The Gravity field of Comet 67 P/Churyumov-Gerasimenko Expressed in Bispherical Harmonics, in: AGU Fall Meeting Abstracts. pp. P31E-2109.

Hu, X. (2016), The exact transformation from spherical harmonic to ellipsoidal harmonic coefficients for gravitational field modeling, Celest. Mech. & Dyn. Ast. 125, pp. 195-222, https://doi.org/10.1007/s10569-016-9678-z.

Pätzold, M., et al. (2016), A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field, Nature, vol. 530, pp. 63-65, https://doi.org/10.1038/nature16535.

Pätzold, M., et al. (2019), The Nucleus of comet 67P/Churyumov-Gerasimenko - Part I: The global view - nucleus mass, mass-loss, porosity, and implications. Monthly Notices of the Royal Astronomical Society, 483, 2337–2346, https://doi.org/10.1093/mnras/sty3171.

Sierks H., et al. (2015), On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko, Science, vol. 347, no. 6220, https://doi.org/10.1126/science.aaa1044.

How to cite: Hu, X. and Andert, T.: Double harmonic-series gravitational field model for bilobed small bodies: example for 67P/Churyumov-Gerasimenko, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12458, https://doi.org/10.5194/egusphere-egu24-12458, 2024.

X3.113
|
EGU24-9078
Erik Vigren, Anders I. Eriksson, Niklas J. T. Edberg, and Colin Snodgrass

The Comet Interceptor (CI) mission, planned for launch in 2029, will ideally involve a flyby of a dynamically new long period comet or an interstellar object passing through the inner solar system. Powerful ground based facilities like the Vera C. Rubin Observatory Legacy Survey of Space and Time will aid in the search for a potential target. The CI mission includes a parking phase at the Sun-Earth L2 point and the target may in fact still be unknown by the time of launch. The question on when to settle for a target is complex. For instance may arise the question of how long time it is motivated to await with a final decision given the chance that a better target may show up if just waiting a little bit longer. We present expectation value-based formalism that could aid in decision making of such kind.

How to cite: Vigren, E., Eriksson, A. I., Edberg, N. J. T., and Snodgrass, C.: On the question of when to settle for a target in the Comet Interceptor mission, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9078, https://doi.org/10.5194/egusphere-egu24-9078, 2024.

X3.114
|
EGU24-3875
|
ECS
Gas sublimation through cometary surface dust mantle
(withdrawn)
Omar Mokhtari and Nicolas Thomas
X3.115
|
EGU24-8725
|
ECS
Hongliang Li, Bo Wu, and Yi Liu

3D models of asteroids provide their physical properties, such as shape, size, and surface features, which are of great importance to asteroid exploration missions and scientific research. The stereo photoclinometry (SPC) technique retrieves detailed surface topography of asteroids based on the reflectance information embedded in the image intensity of each pixel, thus the assessment of its performance is essential before the launch of the mission spacecraft. This work presents a laboratory experiment to evaluate the high-resolution and high-precision 3D surface models of asteroids reconstructed through an integrated photogrammetric and photoclinometric approach using simulation images. The whole experiment involves 3 steps. Firstly, construct the scaled-down experimental fields to simulate real in-situ conditions of the space probe with 3D printed models of asteroids, which represent the target asteroids of future missions. Then, collect simulation data according to various scenarios that might be encountered in a real on-orbit mission. Finally, reconstruct detailed asteroid models through the SPC refinement approach on the basis of stereo photogrammetry (SPG) models. Our previous studies indicate that SPC performance is influenced by both the azimuth and the incidence angles of illumination, as well as the image's general intensity. The experiment takes all these factors into account, as a reference for improving the image-acquiring plan during the in-situ detailed survey phase. The integrated approach will be tested for pixel-wise surface reconstruction of 3D-printed asteroid models of different shapes, i.e., Itokawa and Bennu. According to initial experimental results, the developed approach demonstrates the capability to attain high geometric accuracies and capture fine small-scale topographic details, which fulfills the requirement of the asteroid exploration missions.

How to cite: Li, H., Wu, B., and Liu, Y.: Detailed 3D Surface Reconstruction of Asteroids by Integrating Stereo Photogrammetry and Stereo Photoclinometry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8725, https://doi.org/10.5194/egusphere-egu24-8725, 2024.

X3.116
|
EGU24-3854
|
ECS
Hao Chen, Jürgen Oberst, Konrad Willner, Xuanyu Hu, Friedrich Damme, Ramona Ziese, and Philipp Gläser

One of the objectives of cameras on spacecraft for exploration of asteroids and comets is to perform shape modeling of the small bodies. Stereo-photogrammetry (SPG) and stereo-photoclinometry (SPC) stand out as the two main image-based methods for shape modeling, used in both previous and ongoing missions. In recent years, machine learning technology has experienced rapid development and demonstrated great promise for planetary topographic modeling. However, applications to small bodies have been limited so far. In this work, we present a neural implicit shape modeling method designed specifically for small body images characterized by rapid model convergence. We select 25143 Itokawa, explored by the Hayabusa mission, as a demonstration.  The method uses a sparse set of 52 images captured by the Asteroid Multi-band Imaging Camera (AMICA). The results are consistent with models previously produced using the SPC method in terms of overall size and shape. Also, our method can effectively capture fine-scale terrain features on the surface of Itokawa. This suggests that the neural implicit method can provide a new option and insight for the 3D reconstruction of small bodies.

How to cite: Chen, H., Oberst, J., Willner, K., Hu, X., Damme, F., Ziese, R., and Gläser, P.: Image-based small body shape modeling using the neural implicit method, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3854, https://doi.org/10.5194/egusphere-egu24-3854, 2024.

X3.117
|
EGU24-10656
|
ECS
Samia Ijaz, Jakub Vaverka, Zdeněk Němeček, and Jana Šafránková

Electric field instruments can detect dust impacts on a spacecraft body as transient pulses in the measured electric field. Our study investigates these transient (millisecond) pulses detected by the Langmuir Probe and Waves (LPW) instrument onboard the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. We present a statistical analysis of 360,000 medium frequency burst electric field waveforms recorded in 2015; the study aims to identify and analyze the characteristics of these transient pulses. An automatic routine is used to detect waveforms with rapid fluctuations in the electric field data; this comprises over 12,000 events in the dipole and nearly 5,000 in the monopole configurations. Our findings reveal that most of the pulses in monopole configuration are likely the result of interference rather than dust impacts. Our analysis mainly focuses on dipole observations, which predominantly consist of bipolar events typically associated with dust impacts. These events are mainly detected in the Martian ionosphere, where the spacecraft is negatively charged. Fewer events are recorded when the spacecraft is positively charged, with a maximum at an altitude of 1200 km. The low detection rate of dust impact signals outside the ionosphere suggests that the planet is the most probable source of these dust particles. However, the physical processes by which dust grains are lifted from the surface of the planet to high altitudes are not clear, and thus a possibility that the signals observed might not be generated by dust impacts remains for further investigations.

How to cite: Ijaz, S., Vaverka, J., Němeček, Z., and Šafránková, J.: Study of Dust Impact Signals around Mars using MAVEN/LPW Observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10656, https://doi.org/10.5194/egusphere-egu24-10656, 2024.

X3.118
|
EGU24-10569
Jakub Vaverka, Jiří Pavlů, Jana Šafránková, Zdeněk Němeček, and Samia Ijaz

Dust grain impacting the spacecraft body can be either partly or totally evaporated and ionized as well as a small part of spacecraft material. A cloud of charged particles (impact cloud) generated by such impact can consequently influence the spacecraft potential and/or measurements of on-board scientific instruments. Electric field instruments are sensitive to these disturbances and typically register signals generated by dust impacts as short transient pulses. This method is commonly used for the detection of dust grains even without dedicated dust detectors.

The presented study is focused on the influence of the ambient environment on dust detection for various designs of electric field instruments (probes/antennas) operating in the monopole and dipole configurations. An ambient plasma influences the spacecraft potential, which is crucial for charge separation and consequent propagation of the impact cloud. The plasma and solitary waves also affect dust detection by the presence of other pulses in the measured data. It is important to understand these effects to compare results obtained by various spacecraft in different environments.

How to cite: Vaverka, J., Pavlů, J., Šafránková, J., Němeček, Z., and Ijaz, S.: Influence of ambient environment on dust grains detection by electric field instruments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10569, https://doi.org/10.5194/egusphere-egu24-10569, 2024.

X3.119
|
EGU24-15528
Ingrid Mann, Andrew Poppe, Amalie Gjelsvik, and Aigen Li

NASA’s New Horizons spacecraft is currently exploring the outer solar system and passes the Kuiper Belt. The Student Dust Counter (SDC) onboard New Horizons has measured the flux of interplanetary dust grains throughout nearly the entire mission so far. The observed dust flux around 50 AU at the expected edge of the the Kuipe belt is higher than predicted. A possible explanation could lie in the trajetcries of the dust particles that can be pushed out to large distances by radiation pressure force. We investigate the trajectories of ice particles in the Kuiper belt which are more strongly influenced by radiation pressure when their sizes are reduced, due to mass loss caused by sublimation, solar wind sputtering and photo sputtering. The results suggest that the changing size of the particles may lead to a more stable and confined dust ring in the Solar System's Kuiper Belt. 

How to cite: Mann, I., Poppe, A., Gjelsvik, A., and Li, A.: The influence of sputtering and sublimation on Kuiper belt dust trajectories, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15528, https://doi.org/10.5194/egusphere-egu24-15528, 2024.

X3.120
|
EGU24-2629
Hairong Lai, Lin Pan, Yingdong Jia, Christopher Russell, Martin Connors, and Jun Cui

Submicron debris released in interplanetary collisions gets charged in the solar wind and generates disturbances to the magnetic field environment. The unique magnetic field disturbances, named interplanetary field enhancements (IFEs) are recorded by many spacecraft. In this study, we have developed a novel model to trace the IFEs to their origins. By employing this model, we can pinout regions with highly collision frequencies, thereby identifying regions of intense collisional activity. We can also determine the long-term variation of these highly collisional regions with interplanetary magnetic field observations over decades. The model can help constrain interplanetary magnetic disturbances and our results can be used to guide part of the interplanetary-object survey.

How to cite: Lai, H., Pan, L., Jia, Y., Russell, C., Connors, M., and Cui, J.: Highly collisional regions determined by interplanetary magnetic field structures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2629, https://doi.org/10.5194/egusphere-egu24-2629, 2024.

X3.121
|
EGU24-8902
|
ECS
Libor Nouzak, John Fontanese, Kathryn R. Edwards, Mihaly Horanyi, and Zoltan Sternovsky

This study presents the investigation of the angular and velocity distribution of ions expanding freely from a dust impact generated plasma plume. The characteristic angular and velocity distributions are relevant for the design of dust detector and analyzer instrument, or for the interpretation of electric field antenna signals generated by dust impacts on the spacecraft body.  Iron dust particles of micron and sub-micron size are accelerated to velocities 2–40 km/s using the electrostatic dust accelerator operated at the University of Colorado. A unique experimental setup with a delay line detector (DLD) is used to measure the properties of the expanding ion cloud. The DLD provides the position and the time of impact for individual ions originating from the tungsten impact plate. The angular distribution of ions with respect to target normal is calculated from these positions. The velocity distribution is determined from arrival times of the ions on the detector. The experimental results show that the impact-generated ions expand in the form of a plume with angular distribution following a cosine law and half angle 25°. The velocity distribution consists from different parts which correspond to expansion of a distinct plasma components. The slowest component of the distribution has the most probably speed around 5 km/s and the fastest component around 30 km/s. The contribution of the components changes according to velocity of dust.

How to cite: Nouzak, L., Fontanese, J., Edwards, K. R., Horanyi, M., and Sternovsky, Z.: Laboratory study of dust impact ion free expansion, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8902, https://doi.org/10.5194/egusphere-egu24-8902, 2024.

X3.122
|
EGU24-19956
Jiří Pavlů, Libor Nouzák, Jan Wild, Libor Juha, Zoltan Sternovsky, Jana Šafránková, and Zdeněk Němeček

Understanding the interaction between dust grains and spacecraft materials is crucial for spacecraft dust observations. This study focuses on the characterization of hypervelocity space dust impact spots on a variety of materials commonly used in spacecraft construction. Utilizing laboratory-based experiments, we investigate the spots created by hypervelocity impacts.

Experimental setups involve subjecting different materials, including polymers, metals, and composites, to controlled impacts by accelerated micro-sized dust particles. We employ advanced imaging techniques, such as scanning electron microscopy (SEM), to analyze impact spots at micro and nanoscales. Energy-dispersive X-ray spectroscopy (EDS) is employed to assess compositional changes induced by impact events.

Preliminary results reveal unique impact signatures on diverse materials, showcasing variations in crater morphology, size distribution, and material response. The identification of surface modifications, including fractures, melting, and the formation of ejecta, provides valuable insights into the underlying physics of hypervelocity impacts on different materials. We attempt to extend our observations towards the ejecta creation efficency by various materials.

How to cite: Pavlů, J., Nouzák, L., Wild, J., Juha, L., Sternovsky, Z., Šafránková, J., and Němeček, Z.: Characterization of dust impact spots on various materials, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19956, https://doi.org/10.5194/egusphere-egu24-19956, 2024.