CL4.5 | Earth system models at km-scale and beyond: Implications of resolving smaller scale processes on the climate and challenges
EDI
Earth system models at km-scale and beyond: Implications of resolving smaller scale processes on the climate and challenges
Co-organized by AS5/HS13/OS4
Convener: Hans SeguraECSECS | Co-conveners: Dian Putrasahan, Daisuke Takasuka, Thomas Rackow, Tobias BeckerECSECS
Orals
| Tue, 16 Apr, 08:30–12:30 (CEST)
 
Room 0.49/50
Posters on site
| Attendance Tue, 16 Apr, 16:15–18:00 (CEST) | Display Tue, 16 Apr, 14:00–18:00
 
Hall X5
Orals |
Tue, 08:30
Tue, 16:15
The modeling of the Earth Climate System has undergone outstanding advances to the point of resolving atmospheric and oceanic processes on kilometer-scale, thanks to the development of high-performance computing systems. Models resolving km-scale processes (or storm-and-eddy-resolving models) on a global scale are also able to resolve the interaction between the large and small-scale processes, as evidenced by atmosphere- and ocean-only simulations. More importantly, this added value comes at the expense of avoiding the use of parameterizations that interrupts the interaction between scales, i.e., convective parameterization in the atmosphere or mesoscale eddy parameterization in the ocean. These advantages are the bases for the development of global-coupled storm-and-eddy-resolving models, and even at their first steps, such simulations can offer new insights into the importance of capturing the air-sea interface and their associated small-scale processes in the representation of the climate system.
The objective of this session is to have an overview of the added values of global simulations using storm-resolving atmosphere-only configuration, eddy-resolving ocean-only models, and to identify which added values stay after coupling both components, i.e., mechanisms not distorted by the misrepresentation of sub-grid scale processes in the atmosphere and ocean. In addition to highlighting the importance of the already resolved processes in shaping the climate system in global storm-and-eddy-resolving models, this session is also dedicated to presenting the current challenges in global storm-and-eddy-resolving models (identification of biases and possible solutions) by pointing to the role of the sub-grid scale processes in shaping processes on the large scale.
We call for studies contributing to highlighting the advantages and challenges of using global storm-and-eddy-resolving models in ocean-only, atmosphere-only, and coupled configurations, such as the ones proposed by NextGEMS, EERIE, DestinE, and WarmWorld, as well as studies coming from independent institutions around the world.

Orals: Tue, 16 Apr | Room 0.49/50

Chairpersons: Hans Segura, Thomas Rackow
Convection, local precipitation, clouds
08:30–08:50
|
EGU24-14676
|
ECS
|
solicited
|
On-site presentation
Shuhei Matsugishi, Tomoki Ohno, and Masaki Satoh

Global nonhydrostatic models that cover the globe with a kilometer (km)-scale mesh have been developed by various organizations worldwide and are expected to be next-generation models that can explicitly calculate deep convective clouds. However, it is known that convective upward motions are not sufficiently represented at the km-scale resolution, and the mesh size of O(100m) is required to obtain convergence of upward motions. To understand the limitation of global km-scale models, we investigate the representation of cloud, precipitation, and circulation with the resolution in the global simulations between km-scale to sub-km-scales.

We conduct the global atmospheric simulations by the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for the mesh size of 3.5 km, 1.7 km, 870 m, 440 m, and 220 m using the Supercomputer "Fugaku."  The 3.5 km experiment started on August 1, 2016, the same day as DYAMOND-summer, and the next higher resolution was run using the lower resolution simulation results as initial conditions. We analyzed data on August 5, 2016. We conducted the global 220m simulation for 8 hours.

The resolution dependence of cloud, precipitation, and convection was investigated. Lower clouds decrease with increasing resolution. High cloud increased or decreased with respect to resolution depending on the turbulence scheme. The precipitation distribution and zonal mean humidity do not change significantly, but the precipitation intensity changes with resolution. For the grid spacing of less than km, it eliminates overconcentration of precipitation, and the rain area widens as the resolution becomes finer. The coarse-grained rainfall distribution is smoother in the sub-km scale model than in the km scale model. A finer scale convection core is reproduced in the sub-km scale model. Vertical wind speed at grid point scales increases with increasing resolution. However, when horizontally averaged over a few-degree grid, the vertical wind speed decreases, and the circulation becomes weaker with higher resolution. We found that the km-scale model may be creating large strong convection. Uncertainties resulting from the turbulence scheme also appear to be large in the km/sub-km models.

How to cite: Matsugishi, S., Ohno, T., and Satoh, M.: Differences in the cloud, precipitation, and convection representation between the global sub-km mesh simulation and km simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14676, https://doi.org/10.5194/egusphere-egu24-14676, 2024.

08:50–09:00
|
EGU24-9221
|
ECS
|
On-site presentation
Dorian Spät, Aiko Voigt, Michela Biasutti, and David Schuhbauer

Tropical precipitation is the result of a complex interplay of processes across a wide range of atmospheric scales and is highly variable from place to place. A particularly interesting geographical pattern is obtained for the lag 1 autocorrelation of daily precipitation. Generally, this metric displays a relatively uniform distribution of positive values throughout the tropics. However, certain land regions, such as the Sahel, stand out due to exceptionally low autocorrelation values. These low values correspond to a dominance of high frequency precipitation events in the power spectrum.

In accordance with previous work, we show that CMIP6 climate models struggle to create a similar autocorrelation pattern. Global kilometer-scale models circumvent many of the shortcomings of the conventional coarse models, by resolving deep convection. We find that the two global kilometer-scale models developed as part of the nextGEMS project produce an autocorrelation pattern that is quite similar to the observations. These models also provide an opportunity to study the processes associated with the autocorrelation pattern.

We compare simulations with deep convection parameterization turned on and off to investigate how the parameterization scheme affects the autocorrelation pattern and the underlying power spectrum. Additionally, we perform a precipitation variance analysis based on filtering of convectively coupled equatorial waves to study the genesis of the autocorrelation pattern.

How to cite: Spät, D., Voigt, A., Biasutti, M., and Schuhbauer, D.: Autocorrelation – A Simple Diagnostic for Tropical Precipitation in Global Kilometer-Scale Climate Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9221, https://doi.org/10.5194/egusphere-egu24-9221, 2024.

09:00–09:10
|
EGU24-11797
|
On-site presentation
Jonathan Wille and Erich Fischer

The amplitude of precipitation extremes across Europe is expected to increase through the 21st century under most climate change scenarios. Current CMIP-style global climate models broadly project increased flooding and drought extremes; however, they often rely on parametrization schemes or downscaling methods for inferring about potential future extreme events. These methods often introduce errors leading to high levels of uncertainty for policymakers and infrastructure planning. The need for accurate extreme event projections became further evident after the July 2021 floods and summer 2022 record-breaking heatwaves and droughts across Western Europe.

The ongoing H2020 Next Generation Earth Modelling Systems (nextGEMS) project aims to address these issues with the development of storm-resolving, fully-coupled, Earth-system models. Using the latest Cycle 3 runs from the Integrated Forecast System from ECMWF and ICON from MPI-M, we examine the dynamical representation of extreme precipitation events across Europe and compare it against a suite of observations (station and satellite based), reanalysis datasets, and CESM2 simulations. Focusing on tail-end extremes, the results focus on the realism of high precipitation extremes, value of upscaling to CMIP6 resolution, representation of precipitation drivers, and dry extremes (dry day percentages and consecutive dry days). Overall, both ICON and IFS perform reasonably well in representing high precipitation extremes although issues related to the ICON non-parameterized, deep convection causes overly frequent precipitation events.

How to cite: Wille, J. and Fischer, E.: Representation of extreme precipitation events in storm-resolving global climate models within the nextGEMS project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11797, https://doi.org/10.5194/egusphere-egu24-11797, 2024.

09:10–09:20
|
EGU24-15657
|
ECS
|
On-site presentation
Jasper Denissen, Gabriele Arduini, Ervin Zsoter, Cinzia Mazzetti, Christel Prudhomme, Shaun Harrigan, Gianpaolo Balsamo, Iria Ayan-Miguez, Peter Dueben, Irina Sandu, and Benoit Vanniere

River discharge has direct influence on the water-food-energy-environment nexus and can have devastating impacts during extreme events with rapid onsets such as floods. Floods often occur after extreme precipitation events, which are challenging to forecast accurately, both in time and space. Unresolved small-scale processes and features, including convection and orography, have a detrimental effect on precipitation and consequently hydrological forecast skill. This calls for a spatial resolution increase in Numerical Weather Prediction (NWP) models, including their land component.

The Destination Earth programme of the European Commission addresses this with globally coupled forecasts at spatial resolutions down to the km-scale with lead times of 5 days: the Digital Twin on Weather-Induced Extremes (EDT). These meteorological forecasts are used to force ECMWF’s Land Surface Modelling System (ECLand), the land component of the Integrated Forecasting System (IFS), to generate runoff. Subsequently, the river-routing scheme CaMa-Flood, effectively 1-way coupled to the IFS, is used to route runoff in rivers and to produce hydrological simulations. Essentially, CaMa-Flood will be part of the continuous component of the EDT, which in phase 2 of Destination Earth will provide daily high-resolution forecasts to monitor extreme events, such as floods, in real time. As river discharge acts as a natural integrator of the water cycle, CaMa-Flood can be used as a diagnostic tool to assess the hydrological response to increases in spatial resolution of the forcing and the river-routing network.

In this study, two data products are derived: i) long-term hydrological simulations forced by atmospheric analysis data (e.g. ERA5 or ECMWF operational analysis) and ii) hydrological forecasts (daily forecasts in June - July 2021 and January - February 2022 as well as selected flood cases). To assess their quality, these data are validated with point-observed river-discharge time series. Analysis shows that the long-term hydrological simulations benefit from spatial resolution increases in the meteorological forcing and to a lesser extent from spatial resolution increases in the river-routing network. This is evidenced by higher Kling-Gupta Efficiency (KGE), higher correlations and lower biases across 876 river stations in Europe. Further, hydrological forecasts also benefit from higher spatial resolution meteorological forcing, evidenced both by higher correlations of the continuous summer/winter forecasts against river discharge observations from 798 river stations across Europe and by more pronounced flood peak magnitude for selected flood cases. These results highlight the added value of high resolution for hydrological forecast accuracy.

How to cite: Denissen, J., Arduini, G., Zsoter, E., Mazzetti, C., Prudhomme, C., Harrigan, S., Balsamo, G., Ayan-Miguez, I., Dueben, P., Sandu, I., and Vanniere, B.: Towards a global km-scale flood forecasting system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15657, https://doi.org/10.5194/egusphere-egu24-15657, 2024.

09:20–09:30
|
EGU24-17906
|
ECS
|
On-site presentation
Lilli Freischem, Philipp Weiss, Hannah Christensen, and Philip Stier

Clouds are one of the largest sources of uncertainty in climate predictions. Emerging next-generation km-scale climate models need to simulate clouds and precipitation accurately to reliably predict future climates. To isolate issues in their representation of clouds, and thereby facilitate their improvement, km-scale models need to be thoroughly evaluated via comparisons with observations.

Traditionally, climate models are evaluated using spatio-temporally averaged observations. However, aggregated evaluation loses crucial information about underlying physical processes, such as convective updrafts, and the resulting cloud macrophysical structures. We postulate that a novel spatio-temporal evaluation strategy using satellite observations provides direct constraints on physical processes.

Here, we introduce multifractal analysis as a method for evaluating km-scale simulations. We apply it to top-of-atmosphere outgoing longwave radiation (OLR) fields to investigate structural differences between observed and simulated clouds in the tropics. For this purpose, we compute structure functions from OLR fields to which we fit scaling exponents. We then parameterise the scaling exponents to compute scaling parameters. The parameters compactly characterise OLR variability and can be compared across simulations and observations. We use this method to evaluate the ICON-Sapphire and IFS-FESOM simulations run for cycle 3 of the nextGEMS project via comparison with data from the geostationary satellite GOES-16.

We find that clouds in both models exhibit multifractal scaling from 50 to 1000km. However, the scaling parameters are significantly different between ICON and IFS, and neither match observations. In the ICON model, multifractal scaling exponents are lower than in observations whereas in IFS, they are larger. The observed differences indicate how the modelling approaches in ICON and IFS impact the organisation of clouds. More specifically, the deep convection scheme in ICON is switched off completely whereas it is still active in IFS, which could explain the difference in scaling behaviour we observed.

Our results show that spatio-temporal analysis is a promising new way to constrain global km-scale models. It can provide key insights into model performance and shed light on issues in the representation of clouds.

How to cite: Freischem, L., Weiss, P., Christensen, H., and Stier, P.: Multifractal analysis for evaluating the representation of clouds in global km-scale models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17906, https://doi.org/10.5194/egusphere-egu24-17906, 2024.

09:30–09:40
|
EGU24-5731
|
ECS
|
On-site presentation
Vanessa Rieger, Paul Splechtna, and Aiko Voigt

Clouds crucially impact Earth’s climate. The distribution of clouds, horizontally and vertically, influences the radiative transfer through the atmosphere. Hence, to correctly compute the radiative transfer, it is important to understand the horizontal and vertical distribution of clouds.  Km-scale earth system models enable to resolve convection explicitly and offer the potential to represent cloud patterns more realistically. We investigate simulations of the earth system model ICON with a horizontal resolution of 5 km performed within the project nextGEMS. We identify cloud objects using connected component labelling. The method is applied to the vertically integrated cloud field as well as to the global three-dimensional cloud field. We analyse the distribution of cloud objects, their water and ice content as well as their fractal dimension on a global and regional scale. The choice of the threshold for identifying cloud objects strongly influences the analysis of the objects.

How to cite: Rieger, V., Splechtna, P., and Voigt, A.: Identifying cloud objects in the km-scale earth system model ICON, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5731, https://doi.org/10.5194/egusphere-egu24-5731, 2024.

09:40–09:50
|
EGU24-8603
|
On-site presentation
Ja-Yeon Moon, Sun-Seon Lee, Axel Timmermann, Jan Streffing, Tido Semmler, and Thomas Jung

Clouds are an important regulator of earth’s radiation balance. Therefore, future changes in clouds and corresponding feedbacks are likely to influence global climate sensitivity. How clouds respond to greenhouse warming on global and regional scales is still not well understood. Here we present first results from a km-scale, cloud-permitting greenhouse warming simulation conducted with the coupled OpenIFS-FESOM2 model (AWI-CM3) with ~9 km atmosphere resolution, 137 vertical levels and  4-15 km variable ocean resolution. Our analysis is based on a  set of 10-year time-slice simulations, which branched off from a lower-resolution (31 km) SSP585 transient scenario run with relatively high climate sensitivity. We will quantify the effect of atmosphere resolution and cloud granularity on cloud radiative feedbacks. We will further present results from the calculation of radiative kernels to determine the role of high cloud feedbacks in polar amplification. 

How to cite: Moon, J.-Y., Lee, S.-S., Timmermann, A., Streffing, J., Semmler, T., and Jung, T.: Cloud-feedbacks in global km-scale earth system model simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8603, https://doi.org/10.5194/egusphere-egu24-8603, 2024.

09:50–10:00
|
EGU24-16801
|
On-site presentation
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens

Cloud microphysics are a prime example of processes that remain unresolved in atmospheric modelling with storm-resolving resolution. In this study, we explore how uncertainties in the representation of microphysical processes affect the tropical energy budget in a global storm-resolving model (SRM). We use the global SRM ICON with a one-moment or a two-moment microphysics schemes and do several sensitivity runs, where we vary one parameter of the applied microphysics scheme in its range of uncertainty. We find that the two microphysics schemes have distinct signatures, e.g., in how condensate is distributed among the different hydrometeor categories or in the intensity distribution of precipitation, but their tropical mean cloud fraction and total condensate profiles are rather robust. Precipitation efficiency sets the amount of condensate in the atmosphere and thereby links microphysical processes to the radiative properties of the atmosphere. Uncertainties in the representation of microphysical processes cause substantial spread in the top-of-the-atmosphere (TOA) energy balance. In agreement with the robustness of the cloud fraction, changes in the radiative balance at TOA are dominated by changes in the radiative properties of cloudy points. A shift towards higher cloud-ice concentrations in simulations with the two-moment microphysics scheme leads to more reflected shortwave radiation that is not fully compensated by less outgoing longwave radiation and results in a slight cooling of the atmospheric column. Overall, microphysical sensitivities at storm-resolving resolution are substantial and resemble part of the inter-model spread of a multi-model ensemble.

How to cite: Naumann, A. K., Esch, M., and Stevens, B.: How the representation of microphysical processes affects the tropical energy budget in a global storm-resolving model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16801, https://doi.org/10.5194/egusphere-egu24-16801, 2024.

10:00–10:10
|
EGU24-3359
|
On-site presentation
Masaki Satoh, Woosub Roh, and Shuhei Matsugishi

We propose a protocol for observational intensive intercomparison experiments of global storm-resolving models, targeting for evaluation by the EarthCARE satellite, the new satellite scheduled to be launched in May 2024. Previously, a month-long or 40-day simulation of an intercomparison of global storm-resolving models was conducted under the DYAMOND (the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains) project. Global storm-resolving models can simulate meso-scale systems in the global domain, and it has been shown that the month-long simulations under the DYAMOND project reproduce the evolution of meso-scale convective systems comparable to nature in many aspects. As a next step of the feasibility of the global storm-resolving models, two directions of the intercomparison experiments are considered. One is to extend the simulation time to cover a longer period, such as a one-year experiment with a seasonal march (Takasuka et al. 2024, in preparation). The other is to evaluate with intensive observations. Here, we propose a possible protocol for the short-term (a few weeks to a month) intercomparison experiment to evaluate GSRM results with observation by the EarthCARE satellite and the coordinated grand observation campaign called ORCESTRA.

The EarthCARE satellite will enable the world's first observations of Doppler velocities from space using radar. This groundbreaking capability allows for the observational understanding of global snow and raindrop falling velocities. In numerical climate and weather forecasting models, falling velocities of snow and raindrops have traditionally relied on empirical formulas based on fragmented observations, lacking comprehensive validation through global observations. These falling velocities have frequently been used as tuning parameters for numerical models. The falling velocity of upper-level clouds directly impacts radiation balance through variations in cloud amount. In contrast, the raindrop velocity influences the formation of cold pools and the organization of convective clouds. After obtaining Doppler velocity observations from the EarthCARE satellite, reliance on these falling velocities as tuning parameters becomes obsolete, introducing observational constraints. Conversely, altering these falling velocities from traditional prescribed values in numerical models leads to deviations in model climatology and equilibrium states from observations, necessitating refinement of other processes, which require the resolution of new compensatory errors. This presentation analyzes the characteristics of Doppler velocities using the global non-hydrostatic model NICAM and discusses the impact of snow and raindrops falling velocities. Specifically, utilizing the EarthCARE-like simulated data based on a global 220m mesh NICAM simulation, we aim to comprehend the global view of falling velocity characteristics and gain insights to analyze the EarthCARE satellite observational data.

How to cite: Satoh, M., Roh, W., and Matsugishi, S.: Proposal for an Intensive Short-term Intercomparison Experiment of Global Storm Resolution Models for Evaluation by EarthCARE Satellite Observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3359, https://doi.org/10.5194/egusphere-egu24-3359, 2024.

10:10–10:15
Coffee break
Chairpersons: Tobias Becker, Daisuke Takasuka
Climate and energy
10:45–11:05
|
EGU24-7170
|
solicited
|
On-site presentation
Sun-Seon Lee, Ja-Yeon Moon, Axel Timmermann, Jan Streffing, Tido Semmler, and Thomas Jung

Assessing the future risk of natural disasters, securing sustainable energy and water resources, and developing strategies for adapting to climate change remain challenging due to the large uncertainties in regional-scale climate projections. Recent efforts to address this issue include km-scale coupled climate model simulations that resolve mesoscale processes in the atmosphere and ocean, as well as their interactions with the large-scale environment and small-scale topographic features. Our presentation shows the first results from a series of global 9 km-scale greenhouse warming simulations using the AWI Climate Model Version 3 which is based on the OpenIFS atmosphere model at TCO1279 resolution and 137 vertical levels and the FESOM2 ocean model at 4-15 km resolution. By comparing a set of consecutive 10-year time-slice simulations forced by the CMIP6 SSP585 scenario with a transient simulation at a lower-resolution (31 km in the OpenIFS), we identify key differences in weather and climate-related phenomena, including tropical cyclones, ENSO, and regional climate change features that can be attributed to km-scale dynamics in clouds and atmospheric circulation patterns. The findings from our cloud-permitting climate simulations provide valuable insights into the role of small-scale processes in the sensitivity of the regional and global climate.

How to cite: Lee, S.-S., Moon, J.-Y., Timmermann, A., Streffing, J., Semmler, T., and Jung, T.: Projections of future climate changes from the cloud-permitting greenhouse warming simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7170, https://doi.org/10.5194/egusphere-egu24-7170, 2024.

11:05–11:15
|
EGU24-8254
|
ECS
|
On-site presentation
Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Thomas Rackow, Irina Sandu, Souhail Boussetta, Emanuel Dutra, Ioan Hadade, Joao Martins, Joe McNorton, Birgit Sützl, and Nils Wedi

The nextGEMS project is dedicated to develop global coupled earth-system models for multidecadal climate projections at a kilometre-scale resolution. By harnessing the strengths of high spatial resolution, the project seeks to improve the representation of physical processes and provide climate information at spatial scales that align with real-world measurements. Preparing for 30-year production runs, nextGEMS has achieved significant milestones, including the successful completion of five-year global coupled runs with a 5 km spatial resolution by two different Earth-System models: ICON, and ECMWF’s Integrated Forecasting System (IFS) coupled to the sea ice-ocean model FESOM. In this work we focus on the km-scale IFS-FESOM configuration, along with a comparable set of coarser IFS simulations coupled to either FESOM or NEMO ocean models.

We first provide a brief overview of the most relevant scientific modifications on IFS and FESOM through the development cycles needed to perform multi-annual simulations: a reduction of the global water and energy imbalance by orders of magnitude, as well as the modification in cloud physics parameters to provide a stable climate, improved coupling of ocean surface currents and fluxes, and the addition of improved high-resolution land use and land cover maps.

We further investigate the impact that the new refined surface maps have on the representation of climate at the surface and near-surface. We first explore the spatio-temporal surface-atmosphere coupling in these km-scale simulations. We then focus on more local phenomena: In particular, we pioneer the study of urban climate via coupled global multiannual simulations and explore surface-atmosphere interactions over urbanized areas, by combining refined land use/land cover maps with the active urban scheme in IFS. We find a more realistic spatial distribution of surface temperature in both urban and rural areas, especially noticeable at spatial resolutions of 9km and finer. By showing that the diurnal cycle of urban heat island intensity exhibits improved accuracy in numerous large European urban areas, our global simulations can provide local granularity at the scale of individual cities The enhancements in representing urban climate features are quantified through reduced bias, root-mean square error, and increased correlation with successively increasing model resolution.

How to cite: Pedruzo-Bagazgoitia, X., Becker, T., Milinski, S., Rackow, T., Sandu, I., Boussetta, S., Dutra, E., Hadade, I., Martins, J., McNorton, J., Sützl, B., and Wedi, N.: Demonstrating the potential of km-scale multi-annual coupled global simulations in nextGEMS: a (urban) surface perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8254, https://doi.org/10.5194/egusphere-egu24-8254, 2024.

11:15–11:25
|
EGU24-6596
|
ECS
|
On-site presentation
Edgar Dolores Tesillos and Olivia Martius

Atmospheric blocking and its associated extreme phenomena, such as hot and cold spells represent a risk to society. Current climate models struggle to simulate the atmospheric blocking properties, making it difficult to understand the underlying physical processes and raising uncertainty about their evolution under warming. Today, several climate models attempt to better resolve small-scale processes and have demonstrated their ability to convincingly simulate them; however, few studies have evaluated the impact of these tunings on large-scale flow.

Here, we investigate the representation of Atmospheric blocking characteristics in the two new generations of storm-resolving Earth-system models (nextGEMS), consisting of the Icosahedral Nonhydrostatic Weather and Climate Model (ICON) and the ECMWF Integrated Forecasting System (hereafter only IFS). These models are run at high horizontal resolution, ICON at 5 km (convective parameterization off) and IFS at 4.4 km and 28 km (convective parameterization on). Both models are fully coupled models with eddy-resolving ocean models. The five years of simulations are compared with the reanalysis ERA5 and one CMIP6 model (MPI-ESM1-2-LR). Atmospheric blockings are identified and tracked using a Lagrangian approach based on the geopotential height anomaly at 500 hPa. Properties such as intensity, size, and zonal speed are evaluated.

The nextGEMS showed an increased skill in reproducing atmospheric blocking at the system scale. Firstly, the Atmospheric blocking intensity, spatial extension, and zonal speed are closer to the ERA5 than the CMIP6 model. However, the block intensity and size in the IFS model are simulated better than in the ICON model, and its improvement increases at the finest resolution, 4.4 km. This improvement at higher resolution coincides with more precipitation upstream to the block center than at lower resolution during the onset phase. The latter is consistent with recent studies, indicating that increased moist processes contribute to stronger and bigger blocks. Thus, we provide insights into how the large-scale flow can benefit from the storm-resolving climate models by increasing their skill to simulate atmospheric blocking characteristics and the diabatic processes at higher resolution in a fully coupled system. A more comprehensive evaluation of the large-scale flow in the nextGEMS models will be performed with longer runs.

How to cite: Dolores Tesillos, E. and Martius, O.: Improved northern hemispheric atmospheric blocking properties in two storm-resolving climate models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6596, https://doi.org/10.5194/egusphere-egu24-6596, 2024.

11:25–11:35
|
EGU24-8565
|
On-site presentation
Rohit Ghosh, Suvarchal K Cheedela, Nikolay Koldunov, Amal John, Jan Streffing, Vasco Müller, Sebastian Beyer, Thomas Rackow, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung

Efforts to enhance climate model simulations by achieving higher resolutions to explicitly capture sub-grid scale processes constitute a central objective in contemporary climate modeling. In this pursuit, our focus is on resolving a pivotal element of the climate system—the ocean meso-scale eddies. At the Alfred-Wegener-Institute, we are working towards this objective by employing the ocean-sea ice model FESOM at approximately 5km horizontal resolution (NG5), coupled with the atmospheric model IFS at a 9km horizontal resolution (tco1279).

This presentation showcases preliminary results from the control simulations of IFS-FESOM under 1950 radiative conditions. Furthermore, we provide an initial glimpse into results from a historical simulation starting in 1950 with the same model configuration. Our analysis illuminates how ocean eddy-rich regions are portrayed in our simulations relative to observations. We delineate the changes and improvements in key climate components, encompassing North Atlantic/Southern Ocean temperatures, NAO, atmospheric blocking, midlatitude storm tracks, ENSO, Monsoon, ITCZ, Hadley/Walker Cells, MJO, meridional overturning, gyre circulations, as well as Arctic/Antarctic Sea ice dynamics under such high resolution.

Moreover, we endeavor to demonstrate how regional high-frequency weather and climate processes can be accurately represented in such simulations, including capturing the nature of regional extremes. In essence, our goal is to illustrate how advancing model resolution to resolve ocean eddies contributes to a more comprehensive representation of the climate system.



How to cite: Ghosh, R., Cheedela, S. K., Koldunov, N., John, A., Streffing, J., Müller, V., Beyer, S., Rackow, T., Sidorenko, D., Danilov, S., and Jung, T.: Ocean Eddy-rich Climate Simulation with IFS-FESOM, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8565, https://doi.org/10.5194/egusphere-egu24-8565, 2024.

11:35–11:45
|
EGU24-1430
|
On-site presentation
Claudio Sanchez, Huw Lewis, Richard Jones, James Warner, and Dasha Shchepanovska

Models resolving km-scale processes, such as deep convection, improve the representation of precipitation associated to several processes at sub-synoptic scales, e.g. diurnal cycle, mesoscale convective systems or tropical cyclones. These models generally improve extremes and add value to hazard forecasting, in particular over the tropics. However, these models have been unaffordable to run on a pseudo-global scale until recently and thus their impact in large scale processes is not well known.

Aiming to develop the next generation of Met Office weather and climate prediction systems, the UK K-scale project has been established to evaluate the technical challenges, the scientific improvements and the predictability benefits of km-scale models. The first step of the program is the development of a K-scale “model hierarchy”, a family of simulations across several resolutions and two scientific configurations under the same MetOffice Unified Modelling framework (MetUM). Such hierarchy comprises a generic global model at 12km resolution, realizations at different resolutions of the Cyclic Tropical Channel (CTC), which is a global model in the zonal with north and south boundaries at 26N and 44S respectively, and limited area models (LAMS) over several locations at 2.2km. The two scientific configurations are (i) a global-like aimed at global resolutions above 10km, which includes a parametrization of shallow and mid-level convection, and (ii) a regional-like aimed to km- and sub-km-scale LAM which does not parametrize convection at any level.

Our results from simulations of the 40-day DYAMOND summer and winter periods show than differences between global-like and regional-like configurations at the same resolution can be as large as differences between models at 12km and 4.4km resolution with the same configuration. When all convective processes are not parametrized in the whole tropics at km-scale resolution, the PDF of precipitation shift towards higher intensities, the diurnal cycle improves in several regions, and the wet and dry biases around the E-W boundaries of LAMs are reduced.

The African tropical easterly jet is represented differently across the simulations; with a stronger jet in global-like configurations with convective parametrization. A significant change in mean-state upper wind over the Indian Ocean has potential implications on both subsidence over East Africa, and wind shear over West Africa. These are both tied to widespread rainfall patterns over Africa.

Regional-like configurations at km-scale resolution capture the kinetic energy spectra slope -5/3, poorly represented by the global-like model at 12km. The uncertainty growth across the kscale hierarchy is explored with the use of a twin experiment methodology, and in particular the role of equatorial waves in the error growth across resolutions and science configurations.

How to cite: Sanchez, C., Lewis, H., Jones, R., Warner, J., and Shchepanovska, D.: Evaluation of the K-scale model hierarchy across MetOffice models., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1430, https://doi.org/10.5194/egusphere-egu24-1430, 2024.

11:45–11:55
|
EGU24-18060
|
On-site presentation
Hauke Schmidt

In recent years, great efforts have been made to reduce the horizontal grid spacing of atmospheric models to a few kilometers to build so-called Global Storm-Resolving Models (GSRMs). However, the vertical grid spacings used in these models are generally of the same order of magnitude as those used in classical climate models with horizontal grid spacings of a few hundred kilometers. From previous sensitivity experiments with a variety of model types, from direct numerical simulations to these classical climate models, it is known that especially the simulation of clouds can strongly depend on the vertical model resolution. To test the importance of the vertical grid spacing in GSRMs we have performed simulations with the ICON atmospheric model at 5 km horizontal grid spacing and with between 55 and 540 vertical layers, corresponding to maximum tropospheric vertical grid spacings between 800 and 50 m.  

Here we present results of these simulations. They results show that for most of the variables considered, halving the vertical grid spacing by half has a less pronounced impact than halving the horizontal grid spacing, but the effect is not negligible. For example, for each halving of the vertical grid spacing, coupled with necessary reductions in the time step length, cloud liquid water increases globally by approximately 7%, while it decreases by roughly 16% when halving the horizontal grid spacing. Both the grid spacing and the time step contribute to these effects. Comparison of selected climate variables with observations shows that model biases are only in some cases reduced by higher vertical resolution, because of the dominance of model biases with other origins.

How to cite: Schmidt, H.: Exploring the impact of the vertical grid spacing for the climate simulated in a global storm-resolving model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18060, https://doi.org/10.5194/egusphere-egu24-18060, 2024.

11:55–12:05
|
EGU24-19072
|
ECS
|
On-site presentation
Menno Veerman and Chiel van Heerwaarden

With increasing horizontal resolution in global models, we may expect an increasingly more realistic representation of cloud development over land as both large-scale circulations and local surface heterogeneities, such as orography and land use type, are better resolved. As clouds are a dominant contributor to inter- and intra-diurnal variations in both solar and thermal surface irradiance, the spatiotemporal irradiance variability should then be better represented than in conventional climate models. Here, we use the 5-year coupled atmosphere-ocean global simulations performed in Cycle 3 of the nextGEMS project to evaluate the surface irradiance variability over land. These 5-year simulations were performed at different resolution, from 4.4 to 28 km, and with two different global models, the Integrated Forecasting System (IFS) and the Icosahedral Nonhydrostatic model (ICON), allowing us to separate the impacts of horizontal resolution and of implementation choices concerning model physics. We select a couple of representative locations with varying climate and land surface characteristics where high-quality irradiance observations from the Baseline Surface Radiation Network (BSRN) are available. While first results show some benefits of increased horizontal resolution, higher resolutions simulations do not consistently produce more accurate surface irradiances than simulations at lower resolution. Furthermore, differences between the IFS and ICON models are often larger than differences between the IFS simulations at varying resolutions. These results suggest that if realistic surface irradiance predictions are concerned, e.g. for solar energy applications, the road to model improvement by increasing horizontal resolution is not straightforward. 

How to cite: Veerman, M. and van Heerwaarden, C.: Surface irradiance variability over land in storm-resolving models., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19072, https://doi.org/10.5194/egusphere-egu24-19072, 2024.

12:05–12:15
|
EGU24-10935
|
ECS
|
On-site presentation
|
Matteo Nurisso, Jost von Hardenberg, Silvia Caprioli, Supriyo Ghosh, Nikolay Koldunov, Bruno P. Kinoshita, Natalia Nazarova, Paolo Ghinassi, and Paolo Davini

Destination Earth (DestinE) is a major initiative by the European Commission aiming to create a highly accurate global digital twin of Earth. The Climate Adaptation Digital Twin in DestinE is an ambitious project of several different climate simulations at the km-scale producing a large amount of heavy dataset, difficult to access and analyse with standard data processing  pipelines. Each project and each model produces data that may differ in format (NetCDF, GRIB, Zarr), structure and metadata, leading to the necessity of tweaks and complex pipelines in order to prepare data for analysis.

We thus introduce AQUA, an Application for Quality assessment and Uncertainty quAntification. AQUA is composed of a core engine facilitating data access, combined with a series of modular and independent diagnostics to be run continuously to monitor and evaluate climate simulations. In this contribution we present the core engine and its features. 

Though many available suites already exist to analyse data from global climate models, AQUA has been specifically developed to deal with large km-scale datasets, with the goal of unifying and simplifying climate data access for all users. AQUA responds to the need for users to have the focus on the development of their data analysis, while datasets are found, retrieved and homogenised by an external tool to which they can connect their pipeline. 

Developed in Python, leveraging the power of Dask and Xarray libraries, AQUA prioritises efficiency through lazy data access. Noteworthy is the utilisation of cdo for one-time weight computation, enhancing performances in regridding and averaging operations. A key strength lies in its ability to handle high-resolution, high-frequency data, loading into memory only when necessary. AQUA not only unifies and simplifies climate data access for users but also addresses the crucial need for responsive feedback to climate model developers.

How to cite: Nurisso, M., von Hardenberg, J., Caprioli, S., Ghosh, S., Koldunov, N., P. Kinoshita, B., Nazarova, N., Ghinassi, P., and Davini, P.: AQUA: a novel quality assessment tool for km-scale simulations in the Destination Earth Climate Digital Twin - the core framework, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10935, https://doi.org/10.5194/egusphere-egu24-10935, 2024.

12:15–12:25
|
EGU24-11230
|
ECS
|
On-site presentation
Silvia Caprioli, Jost von Hardenberg, Paolo Ghinassi, Supriyo Ghosh, Lukas Kluft, Nikolay Koldunov, François Massonnet, Natalia Nazarova, Matteo Nurisso, Pablo Ortega, Susan Sayed, Tanvi Sharma, and Paolo Davini

Destination Earth (DestinE) is a major initiative by the European Commission aiming to create a highly accurate global digital twin of Earth. This model, supported by advanced high-performance computing and artificial intelligence, will monitor and simulate interactions between natural phenomena and human activities with unprecedented accuracy. Developed within the Climate Adaptation Digital Twin of the Destination Earth project, AQUA (Application for Quality assessment and Uncertainty quAntification) is a specialized model evaluation framework for running climate data diagnostics.

While existing diagnostic suites for global climate model data are already available, AQUA stands out by specifically addressing extensive kilometer-scale datasets, to simplify climate data access for all possible users. AQUA features two diagnostic families:

  • "state-of-the-art” diagnostics, which compare low-resolution data with observations to assess general model performance and to identify biases and drifts (performance indices, radiation budget, atmospheric global mean time series and biases, teleconnection indices, ocean circulation evaluation, tropical cyclones detection, tracking and zoom-in)
  • “frontier” diagnostics, which exploit new high-resolution (i.e., km-scale hourly) climate data to provide insight at climatological scales of physical/dynamical processes that could not be investigated before (sea surface height variability, tropical rainfall) 

Beyond offering a flexible and efficient framework for processing and analyzing large volumes of climate data, AQUA’s modular design offers the possibility of seamless integration of new diagnostic tools, with plans for further expansion in the future phases of the project.
In this contribution, we will introduce the current suite of AQUA diagnostics and outline its planned future developments.

How to cite: Caprioli, S., von Hardenberg, J., Ghinassi, P., Ghosh, S., Kluft, L., Koldunov, N., Massonnet, F., Nazarova, N., Nurisso, M., Ortega, P., Sayed, S., Sharma, T., and Davini, P.: AQUA: a novel quality assessment tool for km-scale simulations in the Destination Earth Climate Digital Twin - the diagnostics suite, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11230, https://doi.org/10.5194/egusphere-egu24-11230, 2024.

12:25–12:30

Posters on site: Tue, 16 Apr, 16:15–18:00 | Hall X5

Display time: Tue, 16 Apr, 14:00–Tue, 16 Apr, 18:00
Chairperson: Daisuke Takasuka
X5.139
|
EGU24-18964
|
ECS
Stella Bērziņa, Nicolas Gruber, and Matthias Münnich

The characteristics of coherent mesoscale eddies are an important point of evaluation for high-resolution ocean and coupled climate models. Mesoscale eddies are rotating features in the ocean on horizontal scales from 10 to 100 km that transport physical, chemical and biological properties of the ocean water. There are many possible ways to identify and track eddies (sea surface height anomalies, sea surface temperature anomalies, vorticity, etc.) and even within one method parameters can be adjusted to lead to different eddy identification results, for example, the allowed shape error of eddies.  

Here we explore systematically the sensitivity of the identification and tracking results to choices made with regard to data, allowed eddy size and shape error and the use of different high-pass filters. Additionally, eddy identification and tracking are done on a regular latitude-longitude grid rather than the native model grid, therefore, the impact of the chosen grid size is assessed.

To this end, we use “py-eddy-tracker” (Mason et al. 2014) a commonly used open-source geometry-based approach. The algorithm uses sea level anomaly data and several adjustable parameters to identify eddies. It then joins the identified eddies to form tracks by using the ellipsoid method described in Chelton et al. 2011, where the two closest lying eddies in subsequent time steps are connected if they occur within a restricted search region.

We apply this identification and tracking algorithm to high frequency output from different high-resolution coupled climate models run as part of the EERIE project and compare the results of eddy characteristics to observations. This study will help to make more informed and study-specific choices when setting threshold values in eddy identification algorithms for model assessment or creating eddy observational data set from satellite altimetry data.

How to cite: Bērziņa, S., Gruber, N., and Münnich, M.: On the detection and tracking of mesoscale ocean eddies: Parameter sensitivity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18964, https://doi.org/10.5194/egusphere-egu24-18964, 2024.

X5.140
|
EGU24-1089
|
ECS
Stephy Libera, Hugues Goosse, and Dian Putrasahan

Antarctic sea ice plays an important role in the global climate through its influence on local and global oceanic and atmospheric circulations, planetary radiative balance, and the crucial support it provides for Southern Ocean ecosystem. Understanding the physical processes influencing Antarctic sea ice, and the drivers of its change are therefore of broad interest. The sea ice–covered the Southern Ocean, has relatively weak stratification in the upper ocean, where a relatively thin halocline separates the cold winter mixed layer from significantly warmer ocean interior. When warmer waters from the ocean interior enter the mixed layer, it can melt sea ice at its base. Features in the upper ocean, like mesoscale eddies can impact the thermohaline structure and stratification in this region and can impact the heat delivered to the surface. However, the mesoscale dynamics in the polar regions, especially under sea ice cover, is little known due to the limited observations and the inability of many numerical models to resolve mesoscale processes in the high latitudes.   

This study aims to understand better the interaction between ocean mesoscale eddies and sea ice using high-resolution European Eddy RIch Earth System Models (EERIE) models. We investigate the effect of mesoscale eddies locally, and the integrated effect of eddy-sea ice interaction in the circumpolar Southern Ocean. Previous studies have identified eddy ice interactions to vary within regions of varying sea ice concentrations, such as in the high concentration pack ice and low-concentration marginal ice zones. The variations in the eddy-sea ice interaction in the Southern Ocean, within the open ocean, pack ice, and marginal ice zones are further investigated in this study.  

How to cite: Libera, S., Goosse, H., and Putrasahan, D.: Evaluation of Mesoscale Eddy-Ice Interaction in the Southern Ocean using High-Resolution Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1089, https://doi.org/10.5194/egusphere-egu24-1089, 2024.

X5.141
|
EGU24-19735
|
ECS
Emma Ferri, Nicolas Gruber, Matthias Münnich, and Dian Putrasahan

Marine extreme events, such as marine heatwaves, have a disproportional impact on marine organisms and ecosystems, shaping many of their characteristics. Even though such extremes have become the focus of much research in the last few years, our understanding of the processes that give rise to extreme conditions is still relatively poor. Mesoscale processes have been shown to structure and shape extremes, but also not much is known about their role. Here we use graph theory to detect the correlation between extreme marine events and distant occurrences of atmospheric extremes in the context of mesoscale variability. The data stem from a set of mesoscale resolution model simulation results obtained from the European Eddy RIch Earth System Models (EERIE) project. Common statistical tests such as the Pearson correlation coefficient and the Granger causality will be used to build the graph object. This will permit us to build a network of different oceanographic and atmospheric variables in an attempt to detect teleconnections, such as, for example, the impact of El Niño, on the onset, persistence, and demise of extremes. Our initial networks correlate various variables, such as precipitation and sea surface temperature (SST), eddy kinetic energy and SST, and global SST variations.

How to cite: Ferri, E., Gruber, N., Münnich, M., and Putrasahan, D.: Network of extremes in ocean eddy-resolving climate models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19735, https://doi.org/10.5194/egusphere-egu24-19735, 2024.

X5.142
|
EGU24-18483
Dian Putrasahan and Jin-Song von Storch
Mesoscale ocean eddies can be likened to weather events of the sea, influencing a multitude of coupled air-sea processes that help in regulating heat and carbon uptake and consequently the climate. With the advancements in high-performance computing, we can now employ multi-decadal kilometre-scale coupled global climate models (GCMs) that effectively captures the intricacies of mesoscale ocean-atmosphere interactions and shed light on their implications at larger scales. While low resolution CMIP-type GCMs show a dominance of atmospheric-forced coupled variability, e.g. faster winds over ocean surface can enhance turbulent heat flux and thus cool sea surface temperatures (SSTs), satellite observations and eddy-resolving coupled models show a prevalence of mesoscale ocean-forced coupled variability over eddy-rich regions like SST front areas. Two ocean mesoscale dynamical processes can promote such ocean-forced coupled variability, namely through thermal feedback and current feedback. Consider the thermal feedback as an example; the destabilisation of the atmosphere above warm mesoscale anomalies amplifies the downward transfer of momentum from higher-altitude winds to the surface, known as the vertical or downward mixing mechanism. This, in turn, leads to enhanced surface winds and increased turbulent heat flux over warm SST anomalies. We employ a coupled 5km-ocean 10km-atmosphere ICON model to assess the global distribution of mesoscale air-sea coupling associated with these feedbacks and their implications on wind work and eddy-induced Ekman upwelling. Additionally, we show examples of such mesoscale coupling from a Lagrangian perspective through composites of tracked eddies, their impact on ocean upwelling/downwelling and their imprint on the overlying atmosphere beyond the surface like precipitation.

How to cite: Putrasahan, D. and von Storch, J.-S.: Eulerian and Lagrangian Perspectives on Mesoscale Air-Sea Interactions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18483, https://doi.org/10.5194/egusphere-egu24-18483, 2024.

X5.143
|
EGU24-10275
|
ECS
Hans Segura, Angel Peinado, Swantje Bastin, Marius Winkler, Rodomyra Schevchenko, Ian Dragaud, and Divya Patruri

In this study, we assess the impact of precipitation on the ocean current acceleration using an Earth System model resolving deep convection and ocean eddies using a horizontal grid spacing of 5 km. Punctual studies using observations show that precipitation events with intensities higher than 24 mm d^-1 could impact the upper-ocean dynamics. Basically, the increase in buoyance flux equals half buoyancy resulting in the absorption of shortwave radiation (200 W m-2) under clear sky conditions. Due to the spatial sparse of observational sites, there is still the question of whether this number holds only in specific locations. With a grid spacing of 5 km, the simulation shows that precipitation events in the tropical Atlantic with a mean intensity greater than 20 mm d-1 impact tremendously in the stratification due to salinity in the upper ocean with two consequences. First, the mixed layer depth shallows, even in cases with strong wind forcing. Second, the momentum trapped in this shallow layer accelerates the surface currents. This is also accompanied by an increase in the turbulent kinetic energy in the mixed layer depth. These results point to the fact that precipitation, in particular in the deep tropics, could impact the upper ocean dynamic.

How to cite: Segura, H., Peinado, A., Bastin, S., Winkler, M., Schevchenko, R., Dragaud, I., and Patruri, D.: Precipitation impacting upper-ocean currents: an analysis using a km-scale Earth System model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10275, https://doi.org/10.5194/egusphere-egu24-10275, 2024.

X5.144
|
EGU24-2040
|
ECS
Paolo Ghinassi and Paolo Davini

Tropical cyclones (TCs) are one of the most impactful weather phenomena on Earth. Their formation and development depends on small-scale processes like air-sea interaction and convection. These processes pose challenges for climate models since they are often misrepresented and act as sources of uncertainty. Additionally, TCs interact with both tropical and extratropical large-scale circulation, contributing to the upscale error propagation. The accurate representation of such physical processes in climate models therefore is crucial for the correct simulation not only of TCs but of the entire climate system. Until a few years ago, these small scale processes could not be resolved explicitly in traditional state-of-the-art coupled climate simulations due to a too coarse horizontal resolution. Nowadays that we are able to run climate simulations at a very high resolution (less than 10 km) and explicitly resolve such processes we expect to have a much more realistic representation of the intensity, frequency, and structure of TCs in climate models.

For this study, we consider data from the nextGEMS and Climate Digital Twin (part of the Destination Earth initiative) experiments (with an horizontal resolution up to 2.5 km), assessing model performance comparing them with both ERA5 reanalysis and with observational data sets such as IBTrACS to detect model biases. An algorithm for the detection and tracking of TCs based on the TempestExtremes library is used to detect and track TCs at first on a coarser resolution grid on a single time step (e.g., every 6 hours). Then, a series of variables at the original model resolution are saved in the vicinity of the TC centres, to allow examining their finer structure with an unprecedented level of detail. This diagnostic is part of the Application for Quality assessment and Uncertainty quAntification (AQUA) model evaluation framework developed within the Destination Earth project. Our analysis considers the TCs intensity (e.g. cyclones classification, wind pressure relationship), TCs structure (e.g. examining wind gusts and rain bands) and TCs temporal and spatial distribution (computing and analysing TCs trajectories). Preliminary results enlight the ability of these very high-resolution climate simulations to represent TCs features in a much more realistic way, especially close to the smallest resolved scales. Moreover, an increased horizontal resolution is beneficial to reduce model biases, enabling climate models to simulate TCs with a magnitude comparable to the observations.

How to cite: Ghinassi, P. and Davini, P.: The representation of tropical cyclones in high resolution coupled climate simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2040, https://doi.org/10.5194/egusphere-egu24-2040, 2024.

X5.145
|
EGU24-2359
|
ECS
Philipp Weiss and Philip Stier

Aerosols originate from natural processes and human activities. They scatter and absorb radiation but also act as condensation nuclei in clouds. How these interactions influence the climate is still uncertain. New climate simulations at the kilometer-scale allow us to examine long-standing questions related to these interactions such as the complex effects on convective clouds. To perform kilometer-scale simulations with interactive aerosols, we developed the reduced-complexity aerosol module HAM-lite and coupled it to the climate model ICON-Sapphire. HAM-lite is based on and fully traceable to the complex aerosol module HAM. Aerosols are represented as an ensemble of log-normal modes with prescribed sizes and compositions.

We present first global simulations with ICON-Sapphire and HAM-lite at resolutions of about five kilometers and over periods of a few months. The sea surface temperature and sea ice are prescribed with boundary conditions of AMIP, and the initial conditions of the atmosphere and land are derived from the operational analysis of ECMWF. The aerosols are represented by two pure modes, one of dust and one of sea salt, and two internally mixed modes, both of organic carbon, black carbon, and sulfate. The first mixed mode represents aerosols from biomass burning emissions and the second mixed mode represents aerosols from anthropogenic and volcanic emissions.

The simulations capture key elements of the global aerosol cycle, of which some are missing entirely in coarse-scale simulations. For example, cold pool fronts drive intense dust storms over the Sahara and tropical cyclones interact with sea salt aerosols in the Pacific. We observe the transport of dust aerosols across the ocean, the wash out of sea salt aerosols by rain bands, and the updraft of biomass burning aerosols over land. We evaluate the observations with a combination of remote-sensing and in-situ data. We also compare the results to coarse-scale climate simulations. To understand processes like updraft by convection or deposition by rain, we examine the distribution of aerosols throughout the vertical column.

How to cite: Weiss, P. and Stier, P.: Simulating the Earth system with interactive aerosols at the kilometer scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2359, https://doi.org/10.5194/egusphere-egu24-2359, 2024.

X5.146
|
EGU24-21956
|
ECS
Angel Peinado Bravo, Tiffany Shaw, Daniel Klocke, and Bjorn Stevens

General Circulation Models (GCMs) are widely used to understand our climate and to simulate and predict the effects of global warming, revealing the dynamical convergence of storm tracks and jet streams at horizontal grid spacing of 50 km (e.g., Lu et al. 2015). Nevertheless, they have shown persistent biases in the large-scale features of the general circulation and basic climate statistics, which are attributed mainly to the parameterization, specifically, convection parameterization. To address this, Global storm-resolving models (GSRMs) provide an alternative approach to parameterization by explicitly resolving convection and its interaction with other processes,  through the refinement of the horizontal grid, thus, offering new insights into the climate system. In a prior study, we showed the physical convergence of the tropical and general circulation structure at horizontal grid spacing of 2.5 km using aquaplanets. However, questions linger: Does the response under climate change of the storm tracks and jet streams converge at similar horizontal grid spacing, and what mechanism controls this convergence?

 

We will present the effect of increasing horizontal grid spacing on the convergence of the storm tracks and jet stream location and intensity using the global storm-resolving model ICON. Control runs and idealised climate change experiments (increasing sea-surface temperature by 4 Kelvin) were conducted at horizontal grid spacing from 160 km to 2.5 km using an aqua-planet configuration. We adopt an aqua-planet configuration to focus on atmospheric phenomena, specifically convection and cloud feedback, meanwhile reducing the effect of complex interaction with land, topography, sea ice, and seasons. We will discuss the convergence rate of the eddy driven jet, subtropical jet, storm track, and large-scale circulation and their response to climate warming, characterised by the location, width, and intensity. 

How to cite: Peinado Bravo, A., Shaw, T., Klocke, D., and Stevens, B.: Storm Tracks and Jet Streams in ICON: Unravelling Climate Change Responses through Aquaplanet Horizontal Grid Spacing Sensitivity Experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21956, https://doi.org/10.5194/egusphere-egu24-21956, 2024.

X5.147
|
EGU24-11656
|
ECS
Amal John, Sebastian Beyer, Marylou Athanase, Antonio Sánchez Benítez, Helge Goessling, and Thomas Jung

We are presenting our efforts to incorporate spectral nudging capabilities into the development and assessment of model-driven storyline scenarios using a km-scale coupled climate model. Working within the framework of the EU’s Destination Earth project, we are working towards this objective by employing the ocean sea-ice model FESOM coupled with the atmospheric model IFS.

We showcase our preliminary results from the nudged runs of IFS-FESOM for the present day which will eventually lead the way into the storyline scenarios where the same winds would be imposed in different climates. We also show a glimpse of how the nudged simulations for the present-day climate serve to assess model quality against observations based on relatively short simulations, incorporating field campaign data like MOSAiC. In the future, these capabilities could be used to produce “storylines” that help to address the question of how recent extreme events would unfold in preindustrial, +1.5K, +2K, +3K and +4K climates.

Ultimately, our novel storyline scenarios have the potential to illustrate the impact of climate change on extreme events in a way that is more tangible and relatable and nicely complements the probabilistic approach. Since they are based on recent extreme events and explore probable variations in diverse plausible climates, these storylines establish a more profound connection to users' experiences. When these scenarios are presented to users it can foster discussions on future activities and necessary adaptation measures.

How to cite: John, A., Beyer, S., Athanase, M., Sánchez Benítez, A., Goessling, H., and Jung, T.: Climate storylines using the spectral nudged simulations with IFS-FESOM, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11656, https://doi.org/10.5194/egusphere-egu24-11656, 2024.

X5.148
|
EGU24-12427
|
ECS
Sebastian Beyer, Dmitry Sidorenko, Rohit Ghosh, Amal John, Thomas Rackow, Jan Streffing, Suvarchal Kumar Cheedela, Bimochan Niraula, Nikolay Koldunov, and Thomas Jung

Within the EU’s Destination Earth (DestinE) initiative we are developing a digital climate twin with km-scale resolution. This enables us to resolve physical processes that, so far, have only been represented by approximations. This core model setup (called digital twin engine)  is able to run multidecadal simulations for historic periods as well as different future scenarios in unprecedented resolution which will be used by decision makers.

In phase one of DestinE, our goal is to run a control simulation (under 1950 pre industrial conditions), a historic simulation from 1990 to 2020 and finally, projection simulations from 2020 to 2040. The control run will be performed with a global atmospheric resolution of 9km, while the projection simulations use 4km. The ocean component uses the unstructured NG5 mesh, which means an approximate resolution of 5km.

In this work we present the latest iteration of the IFS-FESOM model, the Integrated Forecasting System coupled to the Finite volumE Sea Ice-Ocean Model FESOM2. We explain its components and recent improvements, including  the integration of ECMWF’s IO-server and post processing toolkit multio into the FESOM2 component and the introduction of a novel runoff mapper. Preliminary results from our kilometre-scale simulations are shown and compared to preindustrial conditions, with the primary objective to quantify effects of a ~1K warming world.

How to cite: Beyer, S., Sidorenko, D., Ghosh, R., John, A., Rackow, T., Streffing, J., Cheedela, S. K., Niraula, B., Koldunov, N., and Jung, T.: Km-scale climate simulations with IFS-FESOM, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12427, https://doi.org/10.5194/egusphere-egu24-12427, 2024.

X5.149
|
EGU24-18761
Luis Kornblueh and the Port ICON to Lumi

Porting weather and climate models such as ICON to GPU-based computer production systems requires serious testing of the code adapted to the
additional hardware and its software stack. The high resolution of storm resolving models poses problems for porting ICON and very short simulations facilitate this task.

The 2022 eruption of the Hunga Tonga–Hunga Haʻapai submarine volcano had a very strong water vapour signal, which is modelled by adjusting the model initial conditions to include a cylindrical water vapour plume: a very simple setup to implement, but one that reflects the strong signal in the model results. This plume is visible in the model for years. For the test case we focus on the first time steps. These support the detection of technical errors in the porting of the model code in very short simulations at the final model resolution of 5 km.

We present the scientific use case, the model configuration and some results from test simulations on Lumi.

How to cite: Kornblueh, L. and the Port ICON to Lumi: Modelling of the Hunga Tonga eruption for testing the GPU port of ICON, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18761, https://doi.org/10.5194/egusphere-egu24-18761, 2024.