ITS2.12/CL0.1.4 | Climate, Extremes, and Health: Mapping Risks and Quantifying Impacts on Population Health
EDI PICO
Climate, Extremes, and Health: Mapping Risks and Quantifying Impacts on Population Health
Convener: Sourangsu ChowdhuryECSECS | Co-conveners: Irena Kaspar-Ott, Sagnik Dey, R. Sari Kovats, Claudia Di Napoli, Elke Hertig, Ricardo Trigo
PICO
| Tue, 16 Apr, 08:30–12:30 (CEST)
 
PICO spot 2
Tue, 08:30
The interconnection between climate, environment, and health is evident, with climate change posing significant threats to human welfare. As global temperature rise, extreme weather events such as heatwaves, floods, hurricanes, and droughts, directly and indirectly impact public health, alongside environmental exposures like air pollution. Climate and land use changes can influence the spread of vector-borne diseases such as malaria and increase the risk of waterborne illnesses. Additionally, climate change may result in severe wildfires and episodes of air pollution.

Addressing these complex challenges requires fostering interdisciplinary collaboration among climate researchers, epidemiologists, public health researchers, and social scientists, which is the primary focus of this session. The goal is to create a platform for presenting the latest innovations in using remote sensing and other large datasets to characterize exposures relevant to human health, especially in data-limited regions. The session encompasses various topics, including satellite data applications in human health, planetary epidemiology, risk mapping of infectious diseases, exposure mapping of heat and air pollution to quantify their impacts on human health, health co-benefits of mitigation actions, and the use of machine learning and AI for climate and health applications. The session emphasizes the examination of historical exposure-health outcome relationships, forecasts for the near future, and changes under progressive climate change.

PICO: Tue, 16 Apr | PICO spot 2

Chairpersons: Sagnik Dey, Ricardo Trigo, Irena Kaspar-Ott
08:30–08:35
08:35–08:45
|
PICO2.1
|
EGU24-3476
|
ITS2.12/CL0.1.4
|
ECS
|
solicited
|
Highlight
|
On-site presentation
Malcolm N. Mistry and Antonio Gasparrini

Development of innovative tools for real-time monitoring and forecast of environmental health impacts is central to effective public health interventions and resource allocation strategies. Though a need for such generic tools has been previously echoed by public health planners and regional authorities responsible for issuing anticipatory alerts, a comprehensive, robust and scalable real-time operational framework for predicting temperature-related excess deaths at local scale has not been developed yet. Filling this gap, we propose a flexible conceptual framework for coupling publicly available operational weather forecasts with temperature-mortality risk functions specific to small census-based zones, the latter derived using state-of-the-art environmental epidemiological models. Utilising high-resolution temperature data forecast by a leading European meteorological centre, we demonstrate a real-time application to forecast the excess mortality during the July 2022 heatwave over England and Wales. The output by way of expected temperature-related excess deaths at small geographic areas on different lead times, can be automated to generate maps at various spatio-temporal scales, thus facilitating preventive action and allocation of public-health resources in advance. While the real-case example discussed here demonstrates an application for predicting (expected) heat-related excess deaths, the framework can also be adapted to other weather-related health risks and to different geographical areas, provided data on both meteorological exposure and the underlying health outcomes are available to calibrate the associated risk functions. The proposed framework addresses an urgent need for predicting the short-term environmental health burden on public health systems globally, especially in low- and middle-income regions, where rapid response to mitigate adverse exposures and impacts to extreme temperatures are often constrained by available resources.

How to cite: Mistry, M. N. and Gasparrini, A.: Real-time forecast of temperature-related excess mortality at small-area level: A conceptual framework, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3476, https://doi.org/10.5194/egusphere-egu24-3476, 2024.

08:45–08:47
|
PICO2.2
|
EGU24-2325
|
ITS2.12/CL0.1.4
|
|
On-site presentation
Chen Liang, Jiacan Yuan, Xu Tang, Haidong Kan, Wenjia Cai, and Jianmin Chen

Background: Increased attention has been paid to humid-heat extremes as they are projected to increase in both frequency and intensity. However, it remains unclear how compound extremes of heat and humidity affects morbidity when the climate is projected to continue warming in the future, in particular for a megacity with a large population.

Methods: We chose the Wet-Bulb Globe Temperature (WBGT) index as the metric to characterize the humid-heat exposure. The historical associations between daily outpatient visits and daily mean WBGT was established using a Distributed Lag Non-linear Model (DLNM) during the warm season (June to September) from 2013 to 2015 in Shanghai, a prominent megacity of China. Future morbidity burden related to the combined effect of high temperature and humidity were projected under four greenhouse gases (GHGs) emission scenarios (SSP126, SSP245, SSP370 and SSP585).

Results: The humid-heat weather was significantly associated with a higher risk of outpatient visits in Shanghai than the high-temperature conditions. Relative to the baseline period (2010–2019), the morbidity burden due to humid-heat weather was projected to increase 4.4% (95% confidence interval (CI): 1.1% –10.1%) even under the strict emission control scenario (SSP126) by 2100. Under the high-GHGs emission scenario (SSP585), this burden was projected to be 25.4% (95% CI: 15.8% –38.4%), which is 10.1% (95% CI: 6.5% –15.8%) more than that due to high-temperature weather. Our results also indicate that humid-hot nights could cause large morbidity risks under high-GHGs emission scenarios particularly in heat-sensible diseases such as the respiratory and cardiovascular disease by the end of this century.

Conclusions: Humid heat exposures significantly increased the all-cause morbidity risk in the megacity Shanghai, especially in humid-hot nights. Our findings suggest that the combined effect of elevated temperature and humidity is projected to have more substantial impact on health compared to high temperature alone in a warming climate.

How to cite: Liang, C., Yuan, J., Tang, X., Kan, H., Cai, W., and Chen, J.: The influence of humid heat on morbidity of megacity Shanghai in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2325, https://doi.org/10.5194/egusphere-egu24-2325, 2024.

08:47–08:49
|
PICO2.3
|
EGU24-7407
|
ITS2.12/CL0.1.4
|
ECS
|
On-site presentation
Qinmei Han

Heat stroke is a serious heat-related health outcome that can eventually lead to death. Due to the poor accessibility of heat stroke data, the large-scale relationship between heat stroke and meteorological factors is still unclear. We collected daily heat stroke search index and meteorological data for the period 2013–2020 in 333 Chinese cities to quantify the threshold of people may suffer from heat stroke by Random Forest model. When the daily mean temperature exceeded 23.5°C, heat stroke cases may occur in China. Then, we calculated the total heatwave duration exceeding the threshold quantified aforementioned and population exposure to heatwave in China using four scenario combinations, namely SSP1SSP1-2.6, SSP2SSP2-4.5, SSP3SSP3-7.0, SSP5SSP5-8.5, for 1986-2005, 2041-2060 and 2081-2100 periods.

How to cite: Han, Q.: Heat stroke risk in China quantified by web-based data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7407, https://doi.org/10.5194/egusphere-egu24-7407, 2024.

08:49–08:51
|
EGU24-13800
|
ITS2.12/CL0.1.4
|
ECS
|
Highlight
|
Virtual presentation
Joy Monteiro, Jenix Justine, Hardik Shah, and Neethi Rao

Since the pioneering work in the early 2000s, there has been interest in the climate science community in using the compounding effects of heat and humidity (in the form of wet-bulb temperatures or other meteorological indices such as heat index) to understand health risks due to thermal stress on humans. For instance it has been suggested that the combination of high heat and humidity was responsible for the high mortality observed during the 2015 heatwaves in South Asia. However, assessing health impacts of temperature and humidity is challenging in South Asia since the health data required for epidemiological work is rarely available or reliable for robust analyses.

Using quality-controlled surface observations, we show that the humidity (or equivalently, wet-bulb temperatures) was in fact lower during most high impact heatwaves in South Asia -- the daily maximum was very close to its monthly mean value whereas the daily minimum dropped to much lower values. We show that this is due to a deeper boundary layer which dilutes the near-surface water vapour concentrations. Therefore, our analysis suggests that one-dimensional indices such as wet-bulb temperature may not be accurate in predicting health risks across the wide variety of meteorological conditions that South Asia experiences.

Using recent experimental results that demonstrate that hazardous conditions can occur at lower humidity values, we show that thresholds derived from these experiments produce a more realistic spatial and temporal distribution of hazardous conditions in South Asia as compared to wet-bulb temperatures alone. Furthermore, we show that hazardous exposure during the day extends to times not usually considered hazardous in public health messaging. Our results suggest that physiological thresholds provide a complementary way to assess health risk due to heat along with epidemiological regression studies.

How to cite: Monteiro, J., Justine, J., Shah, H., and Rao, N.: The exceedance of physiologically relevant thresholds in South Asia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13800, https://doi.org/10.5194/egusphere-egu24-13800, 2024.

08:51–08:53
|
PICO2.4
|
EGU24-384
|
ITS2.12/CL0.1.4
|
On-site presentation
Muhammad Ibrahim, Sana Ehsan, and Farhat Abbas

With the evolution in climate, heat waves are occurring more commonly which leads to imply indoor temperatures. Several temperature thresholds have been suggested in diverse environments for the indication of indoor overheating. In this study, threshold values for perceived heat stress are evaluated and differentiated between susceptible households and non-susceptible households for the residents of Faisalabad in Pakistan. Data from 52 low to middle-income households were analyzed with the help of regression analysis, t-tests, and analysis of variances to discover characteristics associated with perceived heat stress during the nighttime period in the selected houses. We considered socio-demographic characteristics, health-related queries, heat-related health problems, and house/building material variables from the selected households. The results suggest that the health status during heat stress, age factor, climate zone, and high indoor temperature were the key attributes for the perceived heat stress. The threshold limit advised by the WHO for indoor is 24°C and most of the dwellers in case study live in 36-38°C. People appeared to be at risk for perceived heat stress without knowing to be at risk, particularly when numerous people live in one room (threshold limit 34.8C), suffering from disease (35.6 C) and below 60 (39.8 oC); therefore they do not take it seriously, to take adaption measures.

How to cite: Ibrahim, M., Ehsan, S., and Abbas, F.: Estimate Temperature Threshold for Low to Middle-Income Dwellers of Faisalabad City during Hot Summer Days, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-384, https://doi.org/10.5194/egusphere-egu24-384, 2024.

08:53–08:55
|
PICO2.5
|
EGU24-19453
|
ITS2.12/CL0.1.4
|
ECS
|
|
On-site presentation
|
Ines Muić, Iris Odak Plenković, Lidija Srnec, and Kristian Horvath

As our climate is changing due to global warming, severe weather is expected to increase in frequency and it's intensity. Out of many examples of severe weather, we are focusing on cold and heat waves which greatly affect people causing increased mortality and morbidity. Also, some of the most important climate modifiers in Croatia are the Adriatic, the Mediterranean, the Dinarides orography, and the Pannonian plain. Because of this, the strongest winds in the Adriatic coast of Croatia are jugo and bora which can sometimes reach gale strength. They are associated with different weather conditions and can also have an impact on morbidity. For example, people describe a favorable impact on health and mood during most cases of moderate bora and unfavorable during moderate jugo episodes.

 In this work, we are exploring the potential of the Universal Thermal Climate Index (UTCI) and Potential Equivalent Temperature (PET) as severe weather-related health risk indicators in Croatia. The UTCI and PET are bioclimate indices that use human heat balance models to represent the thermal stress and comfort that is induced in the human body by meteorological conditions. For a couple of continental, maritime, and mountain stations in Croatia UTCI and PET are calculated from measurements. The exception is the mean radiant temperature which is estimated from the Rayman model based again on the measurements of global radiation, air temperature, and relative humidity. The distribution of all-cause death counts at different UTCI and PET values is investigated to determine a more appropriate measure of health risk.

The UTCI and PET are calculated for the domain over Croatia for the selected cases of a heat wave, a cold wave, and strong wind episodes. The meteorological data used for the calculation of UTCI and PET are hourly NWP model ALADIN-HR output values of air temperature, relative humidity, wind speed, and mean radiant temperature. The UTCI and PET are compared and show good agreement. Results for the cases of strong wind show UTCI sensitivity to the wind but depend on the air temperature primarily.

How to cite: Muić, I., Odak Plenković, I., Srnec, L., and Horvath, K.: Assessing health risks in Croatia for cases of severe weather via UTCI and PET, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19453, https://doi.org/10.5194/egusphere-egu24-19453, 2024.

08:55–08:57
|
PICO2.6
|
EGU24-13063
|
ITS2.12/CL0.1.4
|
On-site presentation
Milica Pecelj

The city of Belgrade has experienced a rise in temperatures during summers, marked by an increased frequency and intensity of heat waves. A concerning element is the escalation of overnight temperatures, which fail to cool down adequately. This phenomenon is particularly prevalent in urban areas due to the urban heat island effect. This study aims to provide evidence of the summer discomfort experienced in Belgrade during tropical nights over the past two decades and its impact on health. To achieve this, it is compiled a dataset containing daily weather information recorded at 9 pm (CET) spanning the years 2000 to 2020.

How to cite: Pecelj, M.: Summer Discomfort During Tropical Nights in Belgrade (Serbia), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13063, https://doi.org/10.5194/egusphere-egu24-13063, 2024.

08:57–08:59
|
PICO2.7
|
EGU24-20931
|
ITS2.12/CL0.1.4
|
ECS
|
On-site presentation
Anna Dimitrova, Alexander Gershunov, and Tarik Benmarhnia

Countries in sub-Saharan Africa (SSA) have some of the highest levels of child malnutrition, with more than one-third of children under five in the region characterized as chronically undernourished. High reliance on subsistence farming, poor adoption of irrigation technologies, and variable climate conditions make populations in SSA highly vulnerable to malnutrition during droughts. We use anthropometric data for 520,734 children under the age of five from 34 countries in SSA collected between 1990 and 2022 in combination with high-resolution agricultural and climate data to estimate the association between agricultural droughts and child undernutrition in the region. We use global gridded data on the geographical distribution of crop areas for 15 major crops. Data on crop planting and harvesting dates are also collected for each crop. The Standardized Precipitation Evapotranspiration Index (SPEI), a multi-scalar drought index, is used to measure the intensity and spatial distribution of droughts during key periods of agricultural production (planting, growth, and harvesting) and of different duration (seasonal and long-lasting droughts). Our analysis shows that droughts during the crop-growing seasons are associated with an increased risk of child undernutrition in SSA. The findings presented in this study call for urgent action to improve drought monitoring and response in SSA where the risks to child health posed by global warming are considerable. Under climate change, the severity and frequency of extreme weather and climate events, including droughts, are projected to increase, which will place millions of children at risk of hunger unless timely action plans are taken to improve food security in the region.

How to cite: Dimitrova, A., Gershunov, A., and Benmarhnia, T.: How agricultural droughts are contributing to child undernutrition in sub-Saharan Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20931, https://doi.org/10.5194/egusphere-egu24-20931, 2024.

08:59–09:01
|
EGU24-10908
|
ITS2.12/CL0.1.4
|
ECS
|
Virtual presentation
Miguel Garrido Zornoza, Cyril Caminade, and Adrian Tompkins

Native to tropical and subtropical regions of Southeast Asia, Aedes albopictus, commonly known as the tiger mosquito, has been spreading worldwide with the aid of human activity. The geographical distribution and temporal dynamics of this mosquito are of special interest, given its role as a vector for arboviruses such as dengue (DENV) and chikungunya (CHIKV). Climate change, and its consequent increase in ­­both mean surface temperatures and the frequency and intensity of heat waves, has the potential to affect the behavior and seasonal activity of this mosquito, thereby posing a significant risk to human health. Understanding the impact of mean temperature changes and extremes on potential vector-borne disease risk is paramount to forecasting future trends as well as developing meaningful intervention strategies.

 

In this work, we study the dynamics of Ae. albopictus over three decades, spanning 1990-2019, with a particular emphasis on the Italian Peninsula, which has remained a significant hotspot in Europe, since its introduction in the 1990s. We employed and adapted VECTRI, a climate-sensitive dynamical model that was originally designed for malaria. The model has been modified to parameterize Ae. albopictus and successfully calibrated to reproduce the seasonality of the vector using ovitrap data from various locations in Italy. Driving the model using high resolution EOBS gridded observation data, we perform various experiments to isolate the impact of temperature trends and late-spring to summer temperature extremes. Our results show a temperature-driven linear increase in the length of the mosquito season, with larger increases over the southern regions. Overall, temperature extremes tend to increase the bulk egg population across the country, although different spatial trends are highlighted: warm events tend to reduce vector populations in the Po valley and southern regions of Italy,already subject to the highest temperatures, while they tend to increase vector abundance over fringe highland areas. Our results indicate that 10-day temperature forecasts could be utilized to predict mosquito activity and consequently guide vector control intervention strategies such as insecticide spraying in the higher altitude regions identified in this study.

How to cite: Garrido Zornoza, M., Caminade, C., and Tompkins, A.: Reacting to climate change and temperature extremes: A case study on the tiger mosquito in Italy­, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10908, https://doi.org/10.5194/egusphere-egu24-10908, 2024.

09:01–09:03
|
PICO2.8
|
EGU24-12490
|
ITS2.12/CL0.1.4
|
ECS
|
|
On-site presentation
Chaimaa Delasse, Rafika Hajji, Tania Landes, Hélène Macher, Pierre Kastendeuch, and Georges Najjar

Today’s cities face many challenges, including those related to climate change, energy efficiency, and human well-being. These issues are closely linked to the thermal dynamics of the built environment. Sub-optimal solutions and increased vulnerability often result from a lack of deep understanding of the spatial and temporal variations of thermal interactions in the urban context, particularly in data-limited regions. The primary objective of this thesis is to develop a methodology for creating "as-built" digital thermal models through 3D reconstruction of urban scene objects such as buildings, trees, and pavements. The coupling of 3D geometry and TIR (Thermal Infra-Red) acquisitions at different periods enhances the semantic richness of the model and facilitates the study of building-tree thermal interactions. This, in turn, enables the calculation and the monitoring of the evolution of thermal comfort indices at a micro-scale (<2km). To this end, the TRIO team has developed LASER/F (Latent And Sensible Radiation Fluxes), a microclimate simulation software that can replicate the effect of buildings and trees on the urban microclimate. The buildings and trees of interest are modeled with a high level of detail (LOD3) to improve the accuracy of the simulations. The simulated thermal model will be evaluated using "real" thermal and eco-physiological data collected in the field. The validated model will be used to simulate various scenarios for improving thermal comfort, making it a valuable decision-making tool for urban planning. The study will be conducted at two sites, one in Strasbourg (France) and the other in Rabat (Morocco). This study aims to analyze, compare, and improve LASER/F simulations at two sites, in two different countries and climates. The goal is to assess the impact of existing vegetation configurations and propose scenarios for improving thermal comfort. This may include changes to tree species or positions and the modification of urban geometry. Measurement campaigns have been carried out at the Strasbourg site during the summer of 2023. Fixed environmental measurements such as wind speed, relative humidity, global radiation, and sap flow were carried out. 3D geometry acquisitions were performed using laser scanners. TIR data was also acquired thanks to thermal cameras at fixed positions and thermobuttons located on facades. Moreover, a mobile system composed of RGB (Red Green Blue) cameras and a TIR camera has been specifically designed. Similar campaigns are planned for the Rabat site in 2024.

How to cite: Delasse, C., Hajji, R., Landes, T., Macher, H., Kastendeuch, P., and Najjar, G.: Digital thermal 3D model for thermal comfort analysis at district scale., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12490, https://doi.org/10.5194/egusphere-egu24-12490, 2024.

09:03–09:05
|
PICO2.9
|
EGU24-9746
|
ITS2.12/CL0.1.4
|
ECS
|
|
On-site presentation
|
Eva Beele, Raf Aerts, Maarten Reyniers, and Ben Somers

Urbanization and global warming have led to the emergence of urban heat islands, profoundly impacting the liveability and long-term well-being of people living in cities. This study investigates the impact of urban green space composition and configuration on stress and sleep quality in Leuven, Belgium, during the summers of 2021 and 2022.

Utilizing three validated stress questionnaires (PSS, PSQI, and HSSI), we assessed mental health, sleep quality and heat stress during 4 heat and 4 control events for 785 respondents. Concurrently, we recorded risk and vulnerability factors related to physical sensitivity, socio-economic sensitivity and personal living space for each respondent. Urban land cover data at 50m and 250m buffer scales were analysed using composition and configuration metrics. Structural equation models were employed to investigate the impact of urban green space on stress and sleep quality during both heat and non-heat control events. Models were adjusted for risk and vulnerability factors, and effectively dealt with spatial autocorrelation inherent in our data.

During control events, mental health, sleep quality and heat stress were predominantly associated with risk and vulnerability factors. High physical sensitivity, elevated socio-economic sensitivity and suboptimal personal living spaces were associated with higher physiological stress, poor sleep quality, and higher heat stress. Conversely, during heat events, stress indicators were predominantly associated with the surrounding green space, while associations with risk and vulnerability factors were limited. Augmenting high green relative cover may mitigate heat stress, while increasing low green cover may alleviate both heat stress and enhance sleep quality. Stratified analyses for socio-economic status and distinct urban-rural regions revealed notable differences among subgroups.

In conclusion, this study emphasizes the importance of incorporating both low and high green spaces to mitigate heat stress and improve sleep quality and therefore, human health, during heat events.

How to cite: Beele, E., Aerts, R., Reyniers, M., and Somers, B.: Residential green space and summer heat stress: a repeated cross-sectional study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9746, https://doi.org/10.5194/egusphere-egu24-9746, 2024.

09:05–09:07
|
PICO2.10
|
EGU24-1878
|
ITS2.12/CL0.1.4
|
|
On-site presentation
Thomas Brenner, Ann-Christine Link, Christoph Reudenbach, Jörg Bendix, Barbara Weckler, Hendrik Pott, Jan Rupp, Martin Witzenrath, Gernot Rohde, Mathias Pletz, Wilhelm Bertrams, and Bernd Schmeck

Community-acquired pneumonia (CAP) is one of the most frequent causes of death among infectious diseases worldwide. Analyzing a dataset of 5,223 CAP patients in a German multicenter cohort study, our research uniquely explores the twofold combined impact of meteorological conditions, air quality conditions, and pre-existing chronic obstructive pulmonary disease (COPD) on CAP admissions. Both the twofold compound effect of absolute values of meteorological and air quality conditions and, even more, their day-to-day changes significantly influence CAP admissions. Our study emphasizes the important role of air quality conditions over meteorological conditions in contributing to increased CAP admissions, with these weather conditions exerting their influence with a lag time of approximately three to four days. Individuals with pre-existing COPD face the highest risk of CAP admission in the general cohort. The implications of our findings extend to supporting at-risk individuals through protective measures and providing healthcare providers with valuable insights for resource planning during pneumonia-inducing weather conditions.

How to cite: Brenner, T., Link, A.-C., Reudenbach, C., Bendix, J., Weckler, B., Pott, H., Rupp, J., Witzenrath, M., Rohde, G., Pletz, M., Bertrams, W., and Schmeck, B.: Combined Impacts of Weather Conditions and COPD on the Risk for Community-Acquired Pneumonia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1878, https://doi.org/10.5194/egusphere-egu24-1878, 2024.

09:07–09:09
|
PICO2.11
|
EGU24-15152
|
ITS2.12/CL0.1.4
|
Highlight
|
On-site presentation
Elke Hertig and Irena Kaspar-Ott

Ground-level ozone is a major air pollutant harmful for human health and there are concerns that ground-level ozone will increase over Europe under climate change despite efforts for a rigorous air pollution control. In addition, high levels of ground-level ozone often occur in combination with high air temperatures, for instance under persistent anticyclonic conditions in summer. Due to climate change heat events such as hot days and heat waves are also increasing. Thus, ground-level ozone health risks could combine with increased health risks from heat exposure.

Changes in the atmospheric chemistry from increased biogenic volatile organic compound emissions, faster chemistry kinetics, and faster peroxyacetyl nitrate decomposition as well as enhanced stratosphere-troposphere exchange, changes of the large-scale atmospheric circulation and synoptic patterns, increased stagnancy, and changes of atmospheric humidity may lead to increases of ground-level ozone in the scope of climate change. For Europe regional differences exist. For instance, over central Europe there is a strong relationship with meteorological conditions, while over southern and northern Europe the influence of ozone persistence and hence precursor emissions is comparably strong on ozone exceedances.

The present contribution comprises relationships of ground-level ozone and temperature with the atmospheric circulation, changes of health-relevant ground-level ozone and temperature events under future climate change as well as the connection of ground-level ozone and temperature with human health outcomes.  

How to cite: Hertig, E. and Kaspar-Ott, I.: Health-relevant compound ground-level ozone and temperature events in Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15152, https://doi.org/10.5194/egusphere-egu24-15152, 2024.

09:09–09:11
|
PICO2.12
|
EGU24-7794
|
ITS2.12/CL0.1.4
|
Highlight
|
On-site presentation
Hana Hanzlíková, Aleš Urban, Eva Plavcová, Jan Kynčl, and Jan Kyselý

In temperate climates, influenza follows a seasonal pattern with peak incidence in winter and contributes significantly to excess winter mortality. The relationship between weather variability, influenza and human health is complex and the underlying mechanisms remain unclear. This study investigated the links between meteorological variables, influenza epidemics, and mortality in the Czech Republic over the 1982/83 to 2019/20 epidemics seasons. Results showed that severe influenza outbreaks with largest mortality impacts, primarily driven by A/H3N2 viruses, were preceded by falling temperatures, increasing relative humidity and cloud cover, and low air temperatures, high cloud cover and high relative humidity prevailed for their duration. In contrast, A/H1N1-related epidemics with lower mortality impacts occurred usually during periods of average or above-average temperatures, accompanied by elevated relative humidity and cloud cover. Influenza epidemics peaking later in winter or in early spring were associated with high excess mortality, usually lasted longer and were accompanied by prolonged periods of low temperatures. The results highlight the importance of ambient temperature and other weather variables in the transmission of influenza virus and course and severity of the epidemics. Prolonged periods of low temperatures in winter, together with the prevalence of influenza A/H3N2 in the population, were identified as an important contributing factors to the significant excess mortality in the temperate climate of central Europe.

How to cite: Hanzlíková, H., Urban, A., Plavcová, E., Kynčl, J., and Kyselý, J.: Weather, influenza epidemics and mortality patterns in central Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7794, https://doi.org/10.5194/egusphere-egu24-7794, 2024.

09:11–09:13
|
PICO2.13
|
EGU24-15296
|
ITS2.12/CL0.1.4
|
On-site presentation
Oliver Schmitz, Kees de Hoogh, Nicole Probst-Hensch, Ayoung Jeong, Benjamin Flückiger, Danielle Vienneau, Gerard Hoek, Kalliopi Kyriakou, Roel C. H. Vermeulen, and Derek Karssenberg

The construction of simulation models for personal exposure analysis requires the integration of field-based data representing spatially distributed values (e.g. air pollution, noise, temperatures), agent-based data (e.g. daily activities, residential and work locations) and socio-economic data (e.g. age, social economic status, mode of commute) to fully cover the space-time activity patterns of cohort participants. In addition, evaluating the associated uncertainty is necessary as potentially not all required input variables are known.

We developed a modelling framework implemented in Python providing modules for 1) the specification of agents' activity diaries including the durations of activities and their spatial contexts, i.e. the location of a person during that activity, commute trips between residential and work location are thereby routed using OpenStreetMap data; 2) incorporating multiple environmental factors potentially on different temporal and spatial scales; 3) personal exposure assessment by calculating, for each time step and environmental factor, average exposure values within the spatial contexts. The modules can be combined in a Python script for exposure assessment of all agents in a cohort, including Monte Carlo simulations.

We show results from a modelling study conducted for the province of Utrecht, the Netherlands. The study area covers about 500000 residential address locations covering urban and rural areas. We used cadastral and census data to define characteristic diurnal activity profiles describing different characteristics such as social economic status and commute type (e.g. car, bicycle, on foot). We calculated individual exposures to NO2, PM2.5 and noise in Monte Carlo mode and demonstrate the spatial variability of exposures per activity profile and the associated uncertainty. The personal exposures for commuter profiles show more contrast across addresses compared to the homemaker profiles.

Our activity-based mobility simulation provides a representative description of space-time activities of individuals. The calculated personal exposures can be used for further epidemiological analysis to investigate the relationship between air pollution exposure and chronic diseases such as diabetes or cardiovascular disease.

How to cite: Schmitz, O., de Hoogh, K., Probst-Hensch, N., Jeong, A., Flückiger, B., Vienneau, D., Hoek, G., Kyriakou, K., Vermeulen, R. C. H., and Karssenberg, D.: A computational framework for personal multi-exposure assessment using space-time activity and socio-economic data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15296, https://doi.org/10.5194/egusphere-egu24-15296, 2024.

09:13–09:15
|
PICO2.14
|
EGU24-12795
|
ITS2.12/CL0.1.4
|
ECS
|
On-site presentation
Stella Dafka, Michael Libman, Davidson H. Hamer, Joacim Rocklöv, and Ralph Huits

Oceanic-atmospheric interactions play a crucial role in the modulation of monsoon rainfall. This is the first study that directly investigates the impact of tropical sea surface temperature (SST) variability on the frequency of sentinel reporting of travel-related dengue from the Geosentinel global emerging infectious disease surveillance network, by using the latest climate reanalysis ERA-5 produced by the European Center for Medium-Range Weather Forecasts, for the period 2007 to 2019. More specifically, we explore lag structures and the associated spatial correlation patterns between travel-related dengue cases, SSTs, and total precipitation over the tropics. We found that the Indo-Pacific and Atlantic Ocean SSTs have a remote influence on dengue risk in global regions that exhibit distinct monsoon characteristics. The coupling between SST variations and rainfall is an important driver of travel-related dengue cases and could act as an early warning signal for outbreak preparedness and travel medicine preventive advice. Finally, our findings highlight the need to better understand the large-scale and local circulation response to changes in the pattern of tropical ocean warming, to be able to better predict extreme events such as droughts and floods and devise adaptation measures against dengue outbreaks.

How to cite: Dafka, S., Libman, M., Hamer, D. H., Rocklöv, J., and Huits, R.: The association between tropical sea surface temperature variability and sentinel reporting of travel-related dengue , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12795, https://doi.org/10.5194/egusphere-egu24-12795, 2024.

09:15–09:17
|
PICO2.15
|
EGU24-18312
|
ITS2.12/CL0.1.4
|
ECS
|
On-site presentation
Yelin Sun and Peijun Shi

Although the World Health Organization has declared that the COVID-19 pandemic no longer qualifies as a global public health emergency, it still needs to review the response of society to the COVID-19 pandemic. Previous studies indicated that socio-economic status (SES) was linearly associated with the COVID-19 pandemic. However, this relationship may be more complex due to regional differences. Meanwhile, it needs to analyze the nonlinear impact of multiple factors on the infection rate. In the study, we analyzed the differences in infections among low, lower-middle, upper-middle and high SES group (LSG, LMSG, UMSG, and HSG, respectively), and considered the social and meteorological factors, revealing the effect and mechanisms of SES on infections. The results showed that the relationship between SES and infection rate was inverted U-shaped, especially in the first three phases. The contribution of meteorological factors to the infection rate first increased and then decreased. In the first phase, mask usage was the most important factor affecting the change in infection rate, with the contribution of 23.17%. In the second phase, temperature was the most important factor affecting the change in infection rate. In the third and fourth phases, vaccination was the most important factor. Furthermore, the nonlinear impact of multiple factors related to SES on the infections explains the complex relationship between SES and infections. The study argues for greater attention to countries with medium SES and the need for future targeted measures to cope with infectious diseases.

How to cite: Sun, Y. and Shi, P.: Multiple factors drive the infection rate in the progress of the COVID-19 pandemic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18312, https://doi.org/10.5194/egusphere-egu24-18312, 2024.

09:17–10:15
Chairpersons: Sourangsu Chowdhury, Claudia Di Napoli, Elke Hertig
10:45–10:55
|
PICO2.1
|
EGU24-6687
|
ITS2.12/CL0.1.4
|
solicited
|
Highlight
|
On-site presentation
|
Kristin Aunan

The concurrent rise in global temperatures and air pollution levels has raised concerns regarding their joint effects on human health. Heatwaves, exacerbated by climate change, have become more frequent and intense, posing significant health risks to vulnerable populations. Concurrently, air pollution, stemming from anthropogenic activities and environmental factors, contributes to respiratory and cardiovascular ailments, amplifying the health burden.

 

It becomes important to utilize multifaceted data from climate models, demographic and socioeconomic projections like the Shared Socioeconomic Pathways (SSPs), geographical information and other pertinent datasets in exploring the complex relationship between climate change, exposure to air pollution, extreme heat and related health outcomes. Using various data sets including climate, demographic, and socioeconomic information at different scales (cohort, city, and small area levels), the recently concluded EU Horizon 2020 EXHAUSTION project quantified the synergetic effects of exposure to extreme heat and air pollution on mortality risks for respiratory and cardiovascular diseases. The project also investigated the influence of various vulnerability factors (e.g. socioeconomic conditions, access to green space) on the health risks. The heat-health burden was projected under future scenarios until 2100, taking into account shifting demographic patterns and baseline health status in various scenarios.

 

We advocate for the extension of methodologies employed in EXHAUSTION to encompass low- and middle-income countries in South Asia and sub-Saharan Africa, where extreme occurrences of heat and air pollution prevail. The assessment of climate change impacts on human health in these regions is notably challenging due to the scarcity of data across various domains, encompassing health, climate, and socio-demographic information. We advocate for enhanced accessibility and availability of this data to deepen our understanding of the effects of climate change-induced extreme heat and air pollution on mortality and morbidity in LMICs. This improved access will better equip health officials to strategize interventions and bolster adaptation responses. Furthermore, there is a need for more detailed emission and socio-demographic projections in LMICs, underpinned by data and reflective of current trends.

How to cite: Aunan, K.: Connecting climate change and health to protect the most vulnerable, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6687, https://doi.org/10.5194/egusphere-egu24-6687, 2024.

10:55–10:57
|
PICO2.2
|
EGU24-20465
|
ITS2.12/CL0.1.4
|
ECS
|
Highlight
|
On-site presentation
Claudia de Luca, Benedetta Cavalieri, Benedetta Baldassarre, Joy Ommer, and Milan Kalas

Climate change represents the greatest threat to human health, with both direct and indirect effects. 

The direct increase of deaths, due to extreme weather and climate events, the emergence and spread of infectious diseases related to changing temperature, habitat and precipitation patterns, and eventually climate shocks and growing stress and anxiety that are affecting mental health. Moreover, extreme weather events cause issues on our health systems and infrastructures, reducing capacity to provide health coverage.  

An increasing awareness on adverse effects of climate change is leading to an update of the EU policy framework through the introduction of  the EU Green Deal, a ‘package’ of directive, policies and strategies to ensure planning, monitoring and reporting of progress towards responsive climate adaptation and climate neutrality; however, a clear demonstration of the health-relevant outcomes of climate policies and actions is still missing, and current policies do not properly consider human health protection.  

The study is developed within the Horizon Europe-funded project TRIGGER, aimed at deepening the understanding of the linkage between climate change and health and advancing society uptake at policy level. 

Starting from mapping and screening the existing climate-related policies and measures at European level, this study assesses the integration of health in such documents. Specifically, through a keyword-based content analysis, it evaluates the integration of health-relevant considerations in 11 European plans and strategies, referring to climate mitigation and adaptation, environmental sustainability and biodiversity conservation. To establish to what extent they consider the direct and indirect impacts of climate change on human health, a qualitative assessment of health integration is performed, exploring also, when available, cost-benefits estimation to possible health impacts and health-related indicators developed.  

The results show that extreme events, such as heat waves and droughts, heavy precipitation and flooding, are the climate-related hazards mostly mentioned in relation to health, even though the policy integration remains limited. Indeed, just few policies contain references to physical health impacts determined by climate change, such as infectious and vector borne diseases, injuries from extreme weather events and cardiovascular and respiratory diseases, while social and mental health effects are even less considered.  

 

How to cite: de Luca, C., Cavalieri, B., Baldassarre, B., Ommer, J., and Kalas, M.: Health integration in climate-related policies: evidence and gaps in the EU policy context  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20465, https://doi.org/10.5194/egusphere-egu24-20465, 2024.

10:57–10:59
|
PICO2.3
|
EGU24-11803
|
ITS2.12/CL0.1.4
|
Highlight
|
On-site presentation
Julie Letertre, Christian Borger, Cristina Ananasso, and Vincent-Henri Peuch

Copernicus is the Earth observation component of the European Union’s Space programme, looking at our planet and its environment to benefit all European citizens.

The Copernicus services transform a wealth of satellite and ground-based measurements into value-added information by processing and analysing the products.

All the information is provided with an open and free data policy to help public national and European authorities, policy makers, international organisations, and service providers to improve European citizens' quality of life.

There are six operational Copernicus Services covering the whole Earth System including ocean, land, atmosphere, and more horizontal domains such as climate change, emergency and security.

To facilitate the use of these information by the different user communities, some Thematic Hubs have been created and are under development. One of the first hubs is the Copernicus Health Hub (CHH) and it is focusing on the health community.

The CHH collects and provides all the Copernicus environmental information that are pertinent to Health, following the WHO definition: Physical, Mental and Well-being. The Health Hub is also supporting the users in better exploiting and uptake Copernicus data and products (via documentation, access to catalogues, inspirational use case stories, …). In addition, the CHH should collect new requirements for the evolution of the Copernicus programme.

In this presentation, the CHH will be introduced in more details, the different types of environmental information will be presented accompanied by some use cases to inspire further developments and new applications for the health community.

How to cite: Letertre, J., Borger, C., Ananasso, C., and Peuch, V.-H.: Copernicus Health Hub: Health community accessing environmental information from the Copernicus Programme, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11803, https://doi.org/10.5194/egusphere-egu24-11803, 2024.

10:59–11:01
|
PICO2.4
|
EGU24-13976
|
ITS2.12/CL0.1.4
|
ECS
|
On-site presentation
Michelle McCrystall, Chris Horvat, Liz McLeod, Madelyn Stewart, Lydia Stone, Subhashni Taylor, Callum Forbes, Eileen Natuzzi, and Berlin Kafoa

Health facilities in Pacific Island Countries are under threat due to ongoing climate change, namely from extreme weather events such as tropical cyclones. However, obtaining accurate projections of risks are inhibited due to the size and complex geometries of these islands which are not accurately or sometimes even entirely represented in the current resolution of global climate models.  Using higher resolution models and the Synthetic Tropical cyclOne geneRation Model (STORM) to generate 10,000 synthentic tropical cyclones, this study takes a greater in-depth analysis of extreme weather events and tropical cyclones at hospitals in Fiji, Vanuatu, Solomon Islands and Tonga.

Preliminary results show an approximately 150% increase in the frequency of extreme cyclones of category 4 or 5 at hospitals across the Pacific, with Vanuatu and Tonga projected to experience a 200% increase in extreme storms. Projected increases in extreme rainfall days (number of days where rainfall exceeds 95th percentile) ranges between 14-161% and extreme heat days are expected to increase between 43-303 days per year by the end of the century. Mitigating against the impacts of climate change on medical care in these islands is hugely important, and so future aims of this work are to use statistical downscaling and AI-driven model acceleration, as part of our project EMPIRIC2 (EMulation of Pacific Island Risk to Infrastructure from Climate), to provide robust, time-variant facility risks statistics directly to policymakers who are working to improve health infrastructure resilience across the South Pacific.

How to cite: McCrystall, M., Horvat, C., McLeod, L., Stewart, M., Stone, L., Taylor, S., Forbes, C., Natuzzi, E., and Kafoa, B.: Quantifying future risk of South Pacific Hospitals from climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13976, https://doi.org/10.5194/egusphere-egu24-13976, 2024.

11:01–11:03
|
PICO2.5
|
EGU24-20406
|
ITS2.12/CL0.1.4
|
ECS
|
On-site presentation
|
Hyun Min Sung, Sungbo Shim, Jisun Kim, Jae-Hee Lee, Min-Ah Sun, Chu-Yong Chung, and Young-Hwa Byun

This study investigates changes in fine particulate matter (PM2.5) concentration and air-quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from historical and future scenarios under shared socioeconomic pathways (SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by 46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0 scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may increase the risk of premature deaths in the future. This study also examined the regional impact of PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also contribute to the warming of near- and mid-future climates.

How to cite: Sung, H. M., Shim, S., Kim, J., Lee, J.-H., Sun, M.-A., Chung, C.-Y., and Byun, Y.-H.: Regional Features of Long-Term Exposure to PM2.5 Air Quality over Asia under SSP Scenarios Based on CMIP6 Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20406, https://doi.org/10.5194/egusphere-egu24-20406, 2024.

11:03–11:05
|
PICO2.6
|
EGU24-8031
|
ITS2.12/CL0.1.4
|
On-site presentation
Andrea Pozzer, Sourangsu Chowdhury, Lin Ma, and Brendan Steffens

Air quality and surface temperature exert significant influences on human health. However, the impact of air pollution and non-optimal temperature is not uniformly experienced across the population. In this study, we employ the "Gini" coefficient, a commonly used concept in economics. While traditionally applied to represent wealth inequality, we adapt this coefficient to gauge spatial inequality in population exposure to air pollutants and temperature, irrespective of the economic income of the population. As pollution and temperature are dynamic and subject to change in the future due to varying climate change and socioeconomic scenarios, our analysis extends to potential scenarios projected by the Coupled Model Intercomparison Project (CMIP6). We show changes of the Gini coefficient both at global, regional and country scale for the present century (2000-2100) covered by the model simulations. Our findings indicate that at global level, air quality inequality has peaked around the present time, with a trend towards decreasing inequality in most projections, reaching a minimum by the end of the century. Conversely, temperature exposure inequality will fluctuate based on the scenario, primarily showing an increasing inequality trend over time in alignment with anticipated climate change impacts. Importantly, the Gini coefficient estimation provides a complementary view to air quality and climate change assessment, indicating exposure disparities among the population in a specific region. Our study shows the unequal distribution of air quality and temperature exposure among populations, emphasizing the need for targeted interventions and policies to address these disparities, especially considering the projected changes in climate and socioeconomic factors.

How to cite: Pozzer, A., Chowdhury, S., Ma, L., and Steffens, B.: Inequality in the exposure to air pollution and temperature through the century, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8031, https://doi.org/10.5194/egusphere-egu24-8031, 2024.

11:05–11:07
|
PICO2.7
|
EGU24-5480
|
ITS2.12/CL0.1.4
|
ECS
|
Highlight
|
|
On-site presentation
|
Debajit Sarkar, Sagnik Dey, Pallav Purohit, and Sourangsu Chowdhury

Anthropogenic emissions are responsible for deteriorated air quality and accelerated climate change in developing countries like India. The current trajectory of emissions is expected to further degrade air quality, potentially leading to increased warming levels by the end of the century, posing severe consequences for public health. In this study, we analyzed two scenarios using the GAINS-model framework - the business-as-usual (BAU), relying on existing air pollution control policies and measures, and the sustainable development scenario (SDS), integrating advanced air pollution control policies and measures, aiming to contain the global temperature increase below 2°C by 2100. We estimated the health burden attributable to ambient air pollution in BAU and SDS scenarios, segregated into regional and sectoral emissions in India for the years 2030 and 2050. Under the BAU scenario, premature mortality and disability-adjusted life-years (DALYs) are projected to increase from 0.72 million (95% CI: 0.53-0.89) and 24.8 million (15.4-30.5) in 2015 by 9.7% and 2.4% in 2030, respectively. In 2050, mortality and DALYs are projected to further increase to 0.88 million (0.75-1.01) and 26.2 million (22.8-29.6). At the sub-national level, states with a low Socio-demographic Index (SDI) are expected to possess majority (49-53%) of the health burden. However, if India follows the SDS scenario, 0.16 million (0.14-0.18) lives and 3.7 million (3.2-4.3) DALYs can be avoided in 2030. The corresponding benefits in 2050 will be 0.34 million (0.29-0.39) lives and 8.4 million (7.1-9.7) DALYs, respectively, relative to the BAU scenario. Our results reveal that states with a high SDI would experience the most significant benefits (15% and 26% for mortality & 26% and 44% for DALYs in 2030 and 2050), as compared to middle and low SDI states. The findings underscore the importance of immediate adoption of cost-effective and advanced technologies driven by sustainable development policies is imperative to mitigate air pollution and climate change simultaneously. A stronger mandate to revise the environmental standards and health policies is necessary to maximize health benefits in India. 

How to cite: Sarkar, D., Dey, S., Purohit, P., and Chowdhury, S.: Health Benefits of Meeting 2-degree Warming Scenario in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5480, https://doi.org/10.5194/egusphere-egu24-5480, 2024.

11:07–11:09
|
PICO2.8
|
EGU24-783
|
ITS2.12/CL0.1.4
|
ECS
|
|
On-site presentation
Amir Reza Salehi, Matt Sparks, and Rebecca Saari

Air pollution, the largest global environmental health threat, associated with millions of premature death each year, is getting worse with climate change. To protect their health from air pollution, governments encourage people to stay indoors and avoid high pollution episodes. Moving indoors to reduce exposure to outdoor air is a form of avoidance adaptation. The frequency of this adaptive action can affect the amount of time people spend inside buildings. In Europe and North America, people already spend 90% of their time indoors. Air pollution from outdoors can infiltrate the building envelope, exposing people to pollution of outdoor origin at all times, and reducing the value of avoidance adaptation. To better understand the effect of this infiltration on human health, we examine the impact of building standards on the value of avoidance adaptation. This involves considering the costs of improving building envelopes and ventilation, and associated benefits due to avoided premature death from air pollution exposure. We conduct a historical study in the United States from 1980 to 2010 to examine the spatial and temporal patterns of costs and benefits associated with improving building standards to enhance adaptation to air pollution. This includes investigating past missed opportunities in reducing mortality and laying the foundation for future studies on existing long-term opportunities, all within the context of a changing climate. To achieve this, we establish baseline levels of exposure to the most harmful air pollutant, fine particulate matter, under this historical building stock across the United States. Subsequently, we assess the benefits and costs realized under each building standard improvement scenario (Improved Building Envelope and Improved Ventilation). This study will identify the demographics that can benefit the most from these improvements, quantifying, for example, the potential net gains of improving housing quality for low-income communities. It will address open questions on the value of adaptation in protecting human health under increasing risks from a changing climate.

How to cite: Salehi, A. R., Sparks, M., and Saari, R.: Hidden Health Opportunities: The Role of Building Standards in Adapting to Air Pollution in a Changing Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-783, https://doi.org/10.5194/egusphere-egu24-783, 2024.

11:09–11:11
|
EGU24-3381
|
ITS2.12/CL0.1.4
|
ECS
|
Highlight
|
Virtual presentation
Agricultural residue burning in India: health impacts and mitigation alternatives
(withdrawn)
Ruoyu Lan, Sebastian Eastham, and Les Norford
11:11–11:13
|
PICO2.9
|
EGU24-6696
|
ITS2.12/CL0.1.4
|
ECS
|
On-site presentation
Lucie Chlapcová, Aleš Urban, and Jan Kyselý

Prague is the capital and the largest city of the Czech Republic and its historic centre near the Vltava river is a popular tourist destination. Especially the area along the right bank of the Vltava river, called Náplavka, is one of the most popular locations to visit during the summer months due to many social and cultural events that take place here. However, given the north-south orientation of the Vltava river and the lack of greenery and shade in this area, the question arises as to what extent thermal conditions are comfortable during hot summer days at Náplavka. Many previous studies have shown that the presence of greenery and shade is essential for reducing the heat stress in the streets.

In this study we assessed the effect of shading on biometeorological conditions at eight different measuring sites located along a loop between Charles Square and the Náplavka riverbank. Meteorological parameters (including air temperature, relative humidity, wind speed, Heat Index, Wet-Bulb Globe Temperature) were measured and recorded using the Kestrel 5400 portable tool, every two hours between 8:00 a.m. and 6:00 p.m. CEST on 9 days during summer in 2019 and on 5 days in 2022. In addition, fisheye photographs were taken at each location to quantify the effect of shading. From these data, we calculated advanced thermal comfort indices (Physiologically Equivalent Temperature, Universal Thermal Climate Index) and Sky View Factor (SVF) in the RayMan Pro program. We compared measured data from all sites under different weather conditions between 2019 and 2022, and assessed the evolution of heat stress during the day as a function of shading at each site.

Our results showed that while in the morning Náplavka’s biometeorological conditions were most comfortable among all measurement sites, they became most stressful in the afternoon. The analysis of the fisheye images showed that the lack of greenery and shading at Náplavka contributed significantly to the high heat stress levels. Our results suggest that the relocation of day-long events from Náplavka to other locations (e.g. a park at Charles Square) should be considered and/or adequate sun protection should be provided on hot summer days.

How to cite: Chlapcová, L., Urban, A., and Kyselý, J.: The role of shading on biometeorological conditions in the historic centre of Prague, Czech Republic., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6696, https://doi.org/10.5194/egusphere-egu24-6696, 2024.

11:13–11:15
|
PICO2.10
|
EGU24-16469
|
ITS2.12/CL0.1.4
|
On-site presentation
Lidija Srnec, Vjeran Magjarević, and Renata Sokol Jurković

Some recent research shows that the average annual excess of deaths is higher due to cold than warm events. Despite that fact, the last two decades are the warmest in history of air temperature monitoring so the long term series analyses show the increase in the frequency but also the severity of the heat waves. 

A heat wave early warning system is a very useful way of protecting human health. This system in Croatia has been operational since 2012 and thanks to it vulnerable groups of people are timely warned about the level of possible risk. In this work, we will briefly explain how Croatian early warning system works nowadays and show the change of number and level of heat wave risks through the past.  

The possible change in heat wave risk in the future will be analysed by using regional climate simulations from the EURO-CORDEX data set. Simulations will cover a set of projections on 12.5 km horizontal resolution, taking into account moderate and high RCP scenarios. The future climate will be considered for three 30-year time slices.  

The operational criteria currently used in the Croatian heat wave early warning system will be applied to the projected daily minimum and maximum air temperatures. The modelled data will be bias-corrected according to the measured data at Croatian meteorological stations. Original outputs and bias-corrected data will be analysed and compared to see which data sets approach closer to the measured data set. Historical climate risk simulated by models will be compared with issued warnings to evaluate simulations. The difference between projected and historical climate risk will be analysed by level of risk, duration, and spatial distribution.              

How to cite: Srnec, L., Magjarević, V., and Sokol Jurković, R.: Health protection from heat waves in Croatia - today and in the future, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16469, https://doi.org/10.5194/egusphere-egu24-16469, 2024.

11:15–11:17
|
EGU24-20786
|
ITS2.12/CL0.1.4
|
Virtual presentation
Fabiola D. Yépez-Rincón, Alicia Avendaño, Sergio Fernández Delgadillo, Adrían L. Ferriño Fierro, Víctor H. Guerra Cobián, Roberto E. Huerta García, Bárbara González Méndez, Nelly L. Ramírez Serrato, Carlos J. Ábrego Góngora, Rebeca Pérez Ruiz, and Rogelio Aguilar Cruz

Multiple factors influence the risk of heat stroke and that, collectively, define the vulnerability of the population. This vulnerability can be physiologically differentiated by older adults and children, by gender, or due to the level of exposure to sporting activities or labor, among others. During the last two decades, hot extreme events are drastically increasing related to climate change and other climate phenomena such as El Niño event. The World Health Organization estimates that more than 70,000 heat-related deaths occurred in Europe during the last two weeks of August 2003 and almost 62,000 deaths during summer 2022. In Mexico, the record of heat-related deaths was set during the summer of 2023 when the Health Secretariat reported 373 deaths due to extreme heat events. The five ranking states were Nuevo León (27% of the cases), Sonora (20%), Baja California (14%), Tamaulipas and Veracruz (8% respectively), and 80% of them are located between the 25 to 31°Latitude North. To understand which the most influential factors for heat-related deaths are, this study analyzes the interaction between land surface temperature, spatial population dynamics, and the exposure-response relationship to urban form and the concentration of air pollution in the Monterrey Metropolitan Area. The paper will present the operational structure of a smart information system based on RS and GIS for planning a better and safer city life in San Nicolás de los Garza, the municipality that ranked first on heat-related deaths. In summary, results indicate the next highlights: (1) extreme heat waves are increasing every year in the metropolitan area, (2) urban heat islands are spatially and temporally located, therefore, (3) risk reduction and civil protection actions must include a holistic approach including warning early systems, social, labor and health care actions, (4) preventive policies must be implemented such as sustainable urban planning for population climate justice, (5) and adopting nature-based solutions. 

How to cite: Yépez-Rincón, F. D., Avendaño, A., Fernández Delgadillo, S., Ferriño Fierro, A. L., Guerra Cobián, V. H., Huerta García, R. E., González Méndez, B., Ramírez Serrato, N. L., Ábrego Góngora, C. J., Pérez Ruiz, R., and Aguilar Cruz, R.: Smart information system based on RS and GIS as an adaptation strategy for reducing mortality from heat waves , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20786, https://doi.org/10.5194/egusphere-egu24-20786, 2024.

11:17–11:19
|
PICO2.11
|
EGU24-13390
|
ITS2.12/CL0.1.4
|
ECS
|
On-site presentation
Hydroclimatic Forecasting to Inform Anticipatory Action for Dengue Virus in Colombia
(withdrawn)
Max Beal, Jorge Osorio, Karl Ciuoderis, Juan Pablo Hernandez-Ortiz, and Paul Block
11:19–11:21
|
PICO2.12
|
EGU24-3257
|
ITS2.12/CL0.1.4
|
ECS
|
|
On-site presentation
Tasneem Osman, Eric Fevre, and Christian Borgemeister

Climate change is expected to substantially alter biodiversity, leading to alterations in phenology, genetic composition, and species distribution while also affecting species interactions and ecosystem. Invasive alien species (IAS) have threatened the integrity of ecosystems throughout the world. They affect the species diversity of native ecosystems and threaten their biological integrity. Due to increasing movement of people and goods around the world, and with new trade routes opening and enhanced transportation, the number of species being introduced into new areas is rising. IAS reduce agricultural yields, irrigated croplands, grazing areas, and water availability, and contribute to the spread of mosquito-borne diseases. Mosquitoes are widely spread Mosquitoes are widely spread and transmit malaria and several arthropod-borne viruses. A particular example of IAS is Parthenium hysterophorus (Asteraceae). It is one of the world's most serious invasive plants that is able to thrive and spread aggressively outside its original geographical areas. Native to the subtropics and tropics of North and South America, Parthenium has negative effects on human, livestock, agriculture and the environment. The aim of this study is to determine the abundance and diversity of mosquito vectors at sites with different degrees of invasive plant infestations in the Rift valley area in Kenya. Currently, the spread of invasive plant species is a major problem in Kenya, where indigenous flora is replaced. The study sites are located in Baringo county. A total of 50000 mosquitoes were captured using a combination of different trapping techniques from six sites, three of them with IAS (Parthenium) and three without. We identified 48 species. A subset of 1000 mosquitoes was analyzed for evidence of recent plant feeding using cold anthrone test. An overall low fructose positivity rate (10.9%) was found. Barcode technique was applied to identify plant food source using specific primers for a locus from the chloroplast genome, ribulose diphosphate carboxylase. The DNA from all trees or shrubs within a 100m radius from the trap was collected to build a barcode reference library. Plant DNA with 55.3% (n = 553) success rate was identified. Sequences were successfully generated from samples, indicating Parthenium plants as the predominant plant fed by mosquito vectors. This survey is an inventory of the mosquito population composition and of the abundance and richness of arboviruses. It provides an insight into how changes in community ecology interact with the main types of land-use change and influence the dynamics of relevant arboviruses in Kenya. Thus, it provides a beneficial knowledge for targeted control.

Keywords

Climate change, land-use changes, agricultural expansion, infectious diseases, mosquito ecology, invasive plants, Parthenium hysterophorus

How to cite: Osman, T., Fevre, E., and Borgemeister, C.: Land-use management of invasive species could help prevent spread of mosquitoes borne diseases: Evidence from Kenya  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3257, https://doi.org/10.5194/egusphere-egu24-3257, 2024.

11:21–11:23
|
PICO2.13
|
EGU24-3881
|
ITS2.12/CL0.1.4
|
ECS
|
|
On-site presentation
|
Claudia Offner, Thalia M Sparling, Claire Dooley, Jillian Waid, Sabine Gabrysch, and Suneetha Kadiyala

Background and aims: Climate change is expected to increase the frequency and severity of monsoon floods in south-east Asia and will severely impact food and nutrition security. The Food and Agricultural Approaches to Reducing Malnutrition (FAARM) cluster-randomized controlled trial in rural Bangladesh, aimed to improve nutrition outcomes through a Nutrition-Sensitive Agriculture (NSA) intervention. We evaluated the role of the intervention in moderating the impact of seasonal flood exposures on women’s dietary diversity (WDD) and food group consumption.

Description and recommendations: Using Bayesian interaction models, we paired a time series measure of seasonal flooding with high-frequency dietary data collected bi-monthly from 2,701 women throughout the trial (2015-2019). We found that for a 1% increase in flooding in Mar/Apr, subsequent WDD decreased by 18% of a food group in the control-arm, with no detrimental effect observed in the treatment-arm. Of the food groups, vitamin-A-rich foods (VA) was most influenced by seasonal flooding. The odds of consuming VA are normally 41% higher in the May/June months. However, for every 1% increase in flooding in Mar/Apr, the odds of consuming VA in May/June only increases by 13% for the control-arm, and by 27% for the treatment group.

Significance: Flooding has a variable impact on WDD and food consumption, and the NSA intervention appeared to offset the detrimental effects of flooding on WDD in the most volatile season. This study highlights the sensitivity of diets to changing monsoon patterns and provides an approach to evaluating the impacts of interventions on these intricate pathways.

How to cite: Offner, C., Sparling, T. M., Dooley, C., Waid, J., Gabrysch, S., and Kadiyala, S.: How seasonal flooding affects diets in Bangladesh during a nutrition-sensitive agriculture intervention., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3881, https://doi.org/10.5194/egusphere-egu24-3881, 2024.

11:23–11:25
|
PICO2.14
|
EGU24-16105
|
ITS2.12/CL0.1.4
|
ECS
|
Highlight
|
|
On-site presentation
|
Dianyu Zhu, Miaomiao Liu, Ruoqi Li, Yuli Shan, Haofan Zhang, Jun Bi, and Klaus Hubacek

Climate change is exacerbating global disease risks, which will change household medical expenditures. Employing machine learning techniques and fine-scale bank transaction data, this study explores the changing household medical expenditures in 290 Chinese cities under four SSP scenarios (SSP1-2.6、SSP2-4.5、SSP3-7.0、SSP5-8.5) and further evaluates the adaptive impacts from socio-economic and physiological adaptations. The results show that the increasing temperature is projected to decrease future medical expenses in China by 5.24% (SSP1-2.6) to 5.60% (SSP5-8.5) in 2060. Cities exhibit differentiated sensitivity to increasing temperatures. Richer cities have enhanced resilience to high temperatures, and cold regions demonstrate less vulnerability to extreme cold weather. Physiological adaptation to climate change can significantly reduce medical expenditures by 27.6% by 2060. Meanwhile, socio-economic adaptation is expected to amplify national total medical expenses by 22.5% in 2060 under the SSP5-8.5 scenario. Our study incorporates adaptation into the prediction of future medical expenditures in China, aiming to assist cities in devising tailored climate adaptation strategies to alleviate the household economic strain induced by climate change. 

How to cite: Zhu, D., Liu, M., Li, R., Shan, Y., Zhang, H., Bi, J., and Hubacek, K.: Increasing climate change changes household medical expenditures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16105, https://doi.org/10.5194/egusphere-egu24-16105, 2024.

11:25–12:30