ITS2.1/CL0.1.2 | Forensics of climate and life
EDI
Forensics of climate and life
Convener: Thushara VenugopalECSECS | Co-conveners: Daniel ClearyECSECS, Jiaoyang Ruan, Deming Yang, Hae-Li ParkECSECS, Valentina Vanghi, Sayak BasuECSECS
Orals
| Tue, 16 Apr, 10:45–12:30 (CEST)
 
Room 2.24
Posters on site
| Attendance Tue, 16 Apr, 16:15–18:00 (CEST) | Display Tue, 16 Apr, 14:00–18:00
 
Hall X5
Posters virtual
| Attendance Tue, 16 Apr, 14:00–15:45 (CEST) | Display Tue, 16 Apr, 08:30–18:00
 
vHall X5
Orals |
Tue, 10:45
Tue, 16:15
Tue, 14:00
The life evolution history on earth is closely intertwined with the multiple stressors within the ever-changing climate system. Ranging from large-timescale oscillations associated with orbital cycles and the glacial-interglacial transitions to regionalized extreme events, a wide range of climatic fluctuations in the past may have contributed to shaping the distribution and evolution of various life forms in the terrestrial environment. The recent developments in observational and coupled climate-ecological modelling approaches have provided a better understanding on the past climate impacts on the evolution of life. However, few occasions have allowed for a general bridge across these fields. Integrating multi-dimensional scientific approaches will provide us with a deeper understanding on the complex climate-ecological interactions and evolution in the past, throwing light into the potential ecological impacts of future climate change.

This session aims at bringing together multidisciplinary research addressing the climate-ecological interactions in the past, present and future, combining observational techniques/methods and ecosystem modelling. We welcome all kind of research contributions in this context and the topics of interests include,

- Past climate change and mass extinctions
- Global biodiversity patterns
- Chemical analyses on the geological materials (teeth, bone collagen, guano/feces, middens, sediment cores
- Geochemical mapping and dietary reconstructions across food webs
- DNA extraction, and taxonomic profiling of microorganisms
- Vegetation dynamics
- Climate and biome modelling
- Species adaptations and ecological strategies
- Genetic diversification and speciation
- Vulnerability and extinction risk, under anthropogenic warming and land use change.

We hope that through this session, individuals can discover new methodologies, applications and collaborations within their research areas that would help push science forward.

Orals: Tue, 16 Apr | Room 2.24

Chairpersons: Thushara Venugopal, Daniel Cleary, Deming Yang
10:45–10:50
10:50–11:00
|
EGU24-4791
|
ITS2.1/CL0.1.2
|
Highlight
|
On-site presentation
Axel Timmermann, Abdul Wasay, Pasquale Raia, and Jiaoyang Ruan

Human history is full of examples documenting that cultural innovations played a key role in reducing the impact of environmental stress on early populations. Over the past 1 million years this type of adaptation (e.g., clothing, shelter, hunting techniques, social behaviour) likely also increased human population size. Humans are cumulative cultural learners, who can integrate knowledge and culture from one generation to the next. The larger the number of interacting people, the faster the rate of innovation.  Here we introduce a stochastic consumer-resource modeling framework, that simulates the dynamics of cultural transmission, learning, and innovation, population size, and resource depletion in a changing environment. Culture is introduced as a booster to carrying capacity. A zero-dimensional version of the model simulates nonlinear phase-synchronization between culture, population and external climate forcings. We will also present the first results of the model in 2 dimensions with full global resolution and 3 interacting hominin species to assess which role differences in cultural innovation played in the extinction of Neanderthals and Denisovans.

 

 

How to cite: Timmermann, A., Wasay, A., Raia, P., and Ruan, J.: Climate, culture and population size, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4791, https://doi.org/10.5194/egusphere-egu24-4791, 2024.

11:00–11:10
|
EGU24-21192
|
ITS2.1/CL0.1.2
|
ECS
|
solicited
|
Highlight
|
On-site presentation
Daniel Green, Kevin Uno, Ellen Miller, Craig Feibel, Eipa Aoron, Catherine Beck, Aryeh Grossman, Francis Kirera, Martin Kirinya, Louise Leakey, Cynthia Liutkus-Pierce, Fredrick Manthi, Emmanuel Ndiema, Cyprian Nyete, John Rowan, Gabrielle Russo, William Sanders, Tara Smiley, Patricia Princehouse, and Natasha Vitek and the Turkana Miocene Project

Exploration of the paleobiology of extinct taxa through ancient DNA and proteomics has been largely limited to Plio-Pleistocene fossils due to molecular breakdown over time, a problem exacerbated in tropical settings. Here, we report small proteomes from the interior enamel of fossils deposited at paleontological sites dating between 29–1.5 Ma in the Turkana Basin, Kenya, which has produced the richest record of Cenozoic mammal evolution in eastern Africa. We recovered enamel protein fragments in all sampled fossils, including a ~ 29 Ma Arsinoitherium specimen belonging to an extinct mammalian order, Embrithopoda. Identified proteins include the classical structural enamel proteins amelogenin, enamelin, and ameloblastin, but also less abundant enamel proteins including collagens and proteases. Protein fragment counts decline in progressively older fossils, but we observe significant variability in Early Miocene preservation across sites, with ~17 Ma deinothere and elephantimorph proboscidean fossils from Buluk preserving substantially more proteins than rhinocerotid and anthracotheriid fossils from ~18 Ma Locherangan and hippopotamids from younger localities at Napudet (< 11 Ma). Most specimens yield known clade-specific diagenetiforms that support morphology-based taxonomic identifications. Matches to clade-specific proteins suggest the future potential of paleoproteomics to contribute to the systematic placement of extinct taxa, but should be approached with caution due to sometimes sparse fragment identification and the possibility of sequence diagenesis. We identify likely modifications that support the ancient age of these proteins, and the oldest examples of advanced glycation end-products and carbamylation yet known. The discovery of protein sequences within dense enamel tissues in one of the persistently warmest regions on Earth promises the discovery of far older proteomes that will aid in the study of the biology and evolutionary relationships of extinct taxa.

How to cite: Green, D., Uno, K., Miller, E., Feibel, C., Aoron, E., Beck, C., Grossman, A., Kirera, F., Kirinya, M., Leakey, L., Liutkus-Pierce, C., Manthi, F., Ndiema, E., Nyete, C., Rowan, J., Russo, G., Sanders, W., Smiley, T., Princehouse, P., and Vitek, N. and the Turkana Miocene Project: 29 million years of diverse mammalian enamel proteomes from Turkana in the East African Rift System, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21192, https://doi.org/10.5194/egusphere-egu24-21192, 2024.

11:10–11:20
|
EGU24-10236
|
ITS2.1/CL0.1.2
|
Highlight
|
Virtual presentation
Dan Zhu, Zinan Lin, and Jiayi Zhou

Climate variations during the last glacial period had major impacts on plant and animal populations including humans. Yet, relationships between human population levels and climate through time and across space remain elusive. Here, we used the archaeological radiocarbon dates spanning 50 to 10 ka BP in China to indicate fluctuations in human population sizes, and investigated their correlations with climate variables from paleoclimate proxies and climate model outputs using a Bayesian radiocarbon‐dated event count (REC) statistical model. We find that temperature has a significant positive effect on population in China during 50 – 10 ka, while the sensitivity of population size to temperature exhibits a declining trend over time, suggesting a potential gradual adaptation to cold climates. We further used a global ecosystem model that explicitly simulates human population dynamics, the ORCHIDEE-FOEGE model, to reconstruct human densities during the LGM, and investigated the roles of climate and atmospheric CO2 levels in shaping the distribution of human populations in China.

How to cite: Zhu, D., Lin, Z., and Zhou, J.: Spatiotemporal relationships between human population and climate during the last glacial period in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10236, https://doi.org/10.5194/egusphere-egu24-10236, 2024.

11:20–11:30
|
EGU24-13260
|
ITS2.1/CL0.1.2
|
ECS
|
Highlight
|
On-site presentation
Elke Zeller, Axel Timmermann, Kyung-Sook Yun, Pasquale Raia, Karl Stein, and Jiaoyang Ruan

We identify past human habitat preferences over time to investigate the role of vegetation and ecosystem diversity on hominin adaptation and migration. Using a transient 3-million-year earth system-biome model simulation and an extensive hominin fossil and archaeological database we distinguish in what habitat previous Hominin lived. Our analysis shows that early African hominins predominantly lived in open environments such as grassland and dry shrubland. Hominins adapted to a broader range of biomes by migrating into Eurasia. By linking the location and age of hominin sites with corresponding simulated regional biomes, we also find a preference for spatially diverse environments. Suggesting our ancestors actively sought out mosaic landscapes.

How to cite: Zeller, E., Timmermann, A., Yun, K.-S., Raia, P., Stein, K., and Ruan, J.: Human adaptation to diverse biomes over the past 3 million years, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13260, https://doi.org/10.5194/egusphere-egu24-13260, 2024.

11:30–11:40
|
EGU24-6896
|
ITS2.1/CL0.1.2
|
ECS
|
On-site presentation
Lan Dai and Axel Timmermann

There is a chance of 1 in 2,700 that asteroid Bennu will hit Earth in 2182 CE. The collision of such medium-sized asteroids (~0.3-1 km in diameter) with our planet can inject massive amounts of dust into the atmosphere, with unknown consequences for terrestrial and marine ecosystems. Here, we use the coupled high-top Community Earth System Model Version 2 (CESM2) with interactive chemistry to investigate how medium-sized asteroid strikes would impact climate, vegetation, and marine productivity. Our idealized simulations show that globally dispersed dust layers of up to 400 Tg in mass block shortwave radiation to the surface for nearly two years, resulting in rapid global cooling and delayed weakening of the hydrological cycle for up to four years after the impact. The combined effects of reduced sunlight, cold temperature, and decreased precipitation significantly inhibit photosynthesis in the terrestrial ecosystem for almost nineteen months. Marine phytoplankton production decreases moderately within five months due to reduced sunlight. Subsequently, however, and depending on the iron amount of the asteroid, large diatom blooms occur over the eastern equatorial Pacific and Southern Ocean due to iron fertilization from strong upwelling and dust deposition, respectively.

How to cite: Dai, L. and Timmermann, A.: Climatic and ecological responses to medium-sized asteroid collision, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6896, https://doi.org/10.5194/egusphere-egu24-6896, 2024.

11:40–11:50
|
EGU24-22198
|
ITS2.1/CL0.1.2
|
On-site presentation
Antoine Souron, Maëlle Couvrat, Éric Pubert, Frédéric Santos, Deming Yang, Delphine Frémondeau, Clarisse Nékoulnang, and Olga Otero

Seasonal variations in climatic variables, and the resulting changes in vegetation, are strong factors governing ecosystem dynamics in modern and ancient times. Stable isotope ratios recorded in tooth enamel document isotopic variations in the environment at the time of enamel formation and thus reveal the intensity and duration of seasonal dietary and climatic variations. However, the long and multi-phased process of enamel mineralization causes a dampening of the original input signal. An inverse model previously developed for ever-growing canines of Hippopotamus amphibius proposes to recover the original input signal and assumes constant enamel growth rate, appositional angle, and maturation length. The present study aims to test these assumptions. To do so, we integrated data from histological thin sections, microtomodensitometric analyses, and stable isotope analyses on teeth of extant H. amphibius specimens (3 upper canines, 1 lower canine, 1 third molar) to quantify the geometric and temporal patterns of enamel mineralization. To estimate enamel extension rates (EER, in µm/increment), we counted the number of increments representing the position of appositional front for each segment of 5 mm along the enamel-dentine junction in thin sections made along the growth axis of each tooth. We used microtomodensitometry to determine the pattern of enamel maturation using grey values profiles of X-ray radiographies as a proxy for enamel mineralization degree. Serial sampling along one upper canine of an individual from Chad, coming from an environment with one rainy season per year, allowed us to document the intra-tooth d13C and d18O variations over 6 years and thus provided an independent temporal control on histological variations. The histological study showed that the enamel apposition phase is strongly irregular over time within the canines, with no clear temporal trend. EERs vary strongly among teeth and within each tooth (50-200 µm/increment, 100-350 µm/increment, and 80-200 µm/increment for the 3 upper canines; 150-550 µm/increment for the lower canine; 70-130 µm/increment for the third molar). The median EER value from the upper canine of the juvenile individual (ca. 180 µm/increment) is significantly higher than median EER values from the upper canines of two adult individuals (ca. 110 µm/increment). Similar variations are also observed in apposition angles (3°-8°, 2.5°-4.5°, 3°-7° for the 3 upper canines; 2°-8° for the lower canine; 6°-18° for the third molar). The enamel mineralization parameters vary with age and tooth type (canine vs. molar). Based on strongly correlated seasonal variations in d13C and d18O, we also confirm cyclic dietary variations with higher proportions of C4 plants consumed during the dry seasons. Using the range of enamel mineralization parameters observed within one single hippo canine, we conducted sensitivity tests on the inverse modeling method, producing different modeled input signals that suggest a wider range of uncertainty. In conclusion, the documented intra-canine variability of EER, as well as other histological parameters (apposition angle, maturation length), reveals challenges when applying the current inverse model to wild populations. Future work would benefit from a systematic histological investigation into the sources of variation of enamel growth and mineralization patterns. 

How to cite: Souron, A., Couvrat, M., Pubert, É., Santos, F., Yang, D., Frémondeau, D., Nékoulnang, C., and Otero, O.: Variable enamel growth rates in hippopotamid canines: Implications for seasonality reconstructions using inverse modeling of intra-tooth isotope data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22198, https://doi.org/10.5194/egusphere-egu24-22198, 2024.

11:50–12:00
|
EGU24-19008
|
ITS2.1/CL0.1.2
|
ECS
|
Highlight
|
On-site presentation
Maximilian Kotz, Tatsuya Amano, James Watson, and Leonie Wenz

Assessments of the effects of climate change on terrestrial biodiversity typically rely on species distribution models [1] which neither exploit data on historical abundance changes nor consider the potentially important role of climate extremes. Here, we combine global data on the abundance of vertebrate species populations [2] with metrics of exposure to local climate conditions to demonstrate that historical warming and increased exposure to heat, heavy precipitation extremes and drought have had significant impacts on abundance, even after controlling for changing human pressures. Fixed-effects models reveal plausibly causal impacts which vary by species class and habitat system, as well as by latitude and the extent of human pressure. Results indicate that warming and intensified heat extremes have negative impacts at low latitudes for freshwater fish and terrestrial birds. By contrast, warming can bring benefits to freshwater birds and terrestrial mammals. Heavy precipitation extremes and drought appear to have had mainly negative impacts on abundance across species’ and habitats. We then combine these empirical results with estimates of the changes in climate conditions and extremes which are attributable to anthropogenic influence, using an established impact-attribution framework [3]. This approach reveals that anthropogenic climate change has caused considerable alterations to the abundance of terrestrial life, for example by reducing the abundance of terrestrial birds and freshwater fish by up to 40% at low latitudes.

 

[1] Thomas, Chris D., et al. "Extinction risk from climate change." Nature 427.6970 (2004): 145-148.

 

[2] Loh, Jonathan, et al. "The Living Planet Index: using species population time series to track trends in biodiversity." Philosophical Transactions of the Royal Society B: Biological Sciences 360.1454 (2005): 289-295.

 

[3] Mengel, Matthias, et al. "ATTRICI v1. 1–counterfactual climate for impact attribution." Geoscientific Model Development 14.8 (2021): 5269-5284.

How to cite: Kotz, M., Amano, T., Watson, J., and Wenz, L.: Anthropogenic intensification of climate extremes has altered vertebrate species abundance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19008, https://doi.org/10.5194/egusphere-egu24-19008, 2024.

12:00–12:10
|
EGU24-18466
|
ITS2.1/CL0.1.2
|
On-site presentation
Marco Vuerich, Francesco Boscutti, Davide Mosanghini, and Giacomo Trotta and the GLORIA Italian Network team

Plant species and communities’ distribution are remarkably affected by the climate change, particularly in arctic and alpine biomes. In alpine ecosystems, species and communities are shifting upwards due to the temperature increase, seeking for the optimum growth conditions. As a prominent effect, a progressive increase of vegetation cover is leading an alpine greening, with important consequences for the overall plant diversity. Nonetheless, little is known about how this trend may produce different effects along elevation gradients. Innovative upscaling approaches able to link field monitoring evidence to remote sensing data represent a promising tool to get new insights into the ecological mechanisms involved in these changes, and to produce reliable projections over time. This study aimed at parsing the long-term trends of remote sensing-derived vegetation indices in five GLORIA (Global Observation Research Initiative in Alpine Environments) network target regions, located across the Italian Alps and Apennines. Normalized Difference Vegetation Index (NDVI) was calculated for each growing season (June-September) in the period 1985-2022, using Landsat 5 and 8 multispectral satellite images of each mountain summit. Linear mixed-effects models were used to analyze the relationships between NDVI, time and climate variables, in different elevation belts. NDVI linearly increased over the last 37 years, but with significant higher increase rates and values at the treeline, lower alpine and alpine zones, compared to the upper alpine, subnival and nival belts. Moreover, NDVI was significantly affected by temperature at lower altitudes, with a significant interaction with rain precipitations, while climate variables were not determinant at high elevations. These results provided further evidence of the ongoing alpine greening and showed that vegetation at the treeline is responding faster than the other communities to a warmer and drier climate. Therefore, future scenarios depicting the fate of alpine plant community communities should not neglect for the interplay of temperature and precipitation regimes. Our finding opens future perspectives on the interpretation of GLORIA field evidence, in a continental upscaling perspective.

How to cite: Vuerich, M., Boscutti, F., Mosanghini, D., and Trotta, G. and the GLORIA Italian Network team: Using long-term remote sensing series to upscale the vegetation shifts along elevation in the GLORIA network Italian peaks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18466, https://doi.org/10.5194/egusphere-egu24-18466, 2024.

12:10–12:20
|
EGU24-21871
|
ITS2.1/CL0.1.2
|
On-site presentation
David D. Zhang

Issues related to whether climate change have caused great calamites in human society are of fundamental importance to current climate change research. The causes and ecological consequences of climate change can, of course, be measured at different levels according to different scales because the natural sciences have long understood the verification of causality and importance of scale. Research regarding human responses to climate change in the humanities and social sciences has been less explicit, less precise, and more variable. The growing need for interdisciplinary work in the issues across the natural/social science boundary (gap), however, demands some common understandings about the causality and scaling issues on climate impact. We seek to facilitate the dialogue between natural and social scientists by reviewing some of the fundamental aspects of the philosophical concepts of causality and scale that can be employed in the climate change/human response study, especially as they relate to large scales of the human responses to ever-changing global climate in history. Here we present the common philosophical concepts of causality and scale in natural sciences and social sciences, examine how researchers in the field employ the philosophical concepts to verify the relationship between human societies and climate change using various samples with multiple scales and explore how to connect and break the links between climate change, human calamites and resilience at different levels of hierarchies. 

How to cite: Zhang, D. D.: Scale and Causal inference: from philosophical concepts to empirical verification in relationship between climate change and social responses., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21871, https://doi.org/10.5194/egusphere-egu24-21871, 2024.

12:20–12:30
|
EGU24-14207
|
ITS2.1/CL0.1.2
|
Highlight
|
On-site presentation
Gabriel Bowen, Kyle Brennan, Sean Brennan, and Timothy Cline

Life-history diversity has been shown to contribute to the resilience of species but can be challenging to quantify, particularly where intra-population genetic structure is lacking. Such is the case for salmon within many fisheries of the North American Pacific Northwest, where the resolution of genetic markers is variable and limited. For Sockeye salmon (Oncorhynchus nerka) within the U.S.-Canada transboundary Taku Watershed, for example, single-nucleotide polymorphisms have successfully distinguished populations associated with specific inland lakes but allocates many individuals to an undifferentiated “River Type” stock. The extent and dynamics of geographic structure within this stock, and thus its potential contribution to the fishery’s resilience, remain unresolved.

In such cases, intrinsic non-genetic markers that record key aspects of life history, such as the isotope ratios of body tissues, can provide valuable information on population structure and diversity. We combined a recently published stream network model for strontium stable isotopes (87Sr/86Sr) with otolith (ear stone) microchemistry data to infer the geographic natal origins of 45 adult fish captured during the 2019 run. Our analysis was implemented in a Bayesian framework and leveraged radio tag data as a source of prior information. We distinguish 4 previously undifferentiated sub-populations within the River Type stock, characterized by groups of fish with distinct natal 87Sr/86Sr values and, by inference, natal habitat locations. Although data from additional years will be needed to assess the persistence of these patterns, the result implies potential for previously unrecognized geographic structure within the River Type stock as a contributor to resilience within the population. The lack of genetic differentiation among the subpopulations may suggest that plasticity of habitat use is prevalent and contributes to adaptation. Alternatively, individuals may exhibit strong site fidelity, but differentiation of these sub-populations may be relatively recent or obscured by gene flow. Distinction between these hypotheses should be resolvable by applying the Sr-isotope method to fish recovered across multiple years.

How to cite: Bowen, G., Brennan, K., Brennan, S., and Cline, T.: Decoding Cryptic Population Structures using Stable Isotope Markers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14207, https://doi.org/10.5194/egusphere-egu24-14207, 2024.

Posters on site: Tue, 16 Apr, 16:15–18:00 | Hall X5

Display time: Tue, 16 Apr 14:00–Tue, 16 Apr 18:00
Chairpersons: Jiaoyang Ruan, Deming Yang, Thushara Venugopal
X5.86
|
EGU24-12518
|
ITS2.1/CL0.1.2
|
ECS
|
Deming Yang, Katya Podkovyroff, Kevin Uno, Gabriel Bowen, Diego Fernandez, and Thure Cerling

Strontium isotope ratios (⁸⁷Sr/⁸⁶Sr) of incrementally grown tissues have been used to study movement and migration of animals. Despite advances in characterizing ⁸⁷Sr/⁸⁶Sr turnover [1], the 2-D geometry of turnover in the tooth enamel is still poorly understood. The relocation of a zoo elephant (Loxodonta africana) named Misha provided an exceptional case study for understanding this pattern [1]. We documented the ⁸⁷Sr/⁸⁶Sr turnover in Misha’s molar using high-resolution in situ measurements with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

We prepared a longitudinally-cut thick section from Misha’s molar plate for LA-ICP-MS analysis. Within the tooth enamel, we measured 10 LA-ICP-MS transects parallel to the enamel dentine junction (EDJ), to map the 2-D pattern of ⁸⁷Sr/⁸⁶Sr turnover. Within the dentine, we measured a transect adjacent to the EDJ to document the unattenuated ⁸⁷Sr/⁸⁶Sr turnover sequence. We also analyzed conventionally drilled enamel samples from the same molar plate using the solution method for ⁸⁷Sr/⁸⁶Sr to document any turnover signal attenuation.

Molar dentine data are consistent with the published Sr turnover pattern in Misha’s tusk dentine. The inner half of the molar enamel preserves the turnover features in high fidelity, with a 2-D turnover geometry closely following that of enamel apposition. By contrast, the middle to outer surface of the enamel shows progressively more elevated ⁸⁷Sr/⁸⁶Sr values than those of the dentine. Data from drilled enamel samples show an attenuated turnover pattern due to averaging during drilling, as well as more elevated ⁸⁷Sr/⁸⁶Sr. We attribute these elevated Sr ratios to post-relocation Sr overprinting primarily on the outer enamel surface during enamel maturation.

Our results suggest that in situ LA-ICP-MS analysis of the inner half of enamel best recovers the time scale and magnitude of the ⁸⁷Sr/⁸⁶Sr turnover in an elephant molar. By contrast, the attenuated and overprinted turnover sequence from conventionally drilled enamel samples may lead to biased interpretations of the timing and geospatial scale of the animal’s movement history. To properly interpret conventionally drilled enamel sequences, future work would benefit from a modeling framework that can account for attenuation, overprint, and turnover of Sr, to quantitatively reconstruct movement or life history of extant and extinct animals. 

References:

[1] Yang, D.Bowen, G. J.Uno, K. T.Podkovyroff, K.Carpenter, N. A.Fernandez, D. P., & Cerling, T. E. (2023). BITS: A Bayesian Isotope Turnover and Sampling model for strontium isotopes in proboscideans and its potential utility in movement ecologyMethods in Ecology and Evolution1428002813. https://doi.org/10.1111/2041-210X.14218

How to cite: Yang, D., Podkovyroff, K., Uno, K., Bowen, G., Fernandez, D., and Cerling, T.: Strontium isotope turnover event mapped onto an elephant molar: implications for movement reconstructions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12518, https://doi.org/10.5194/egusphere-egu24-12518, 2024.

X5.87
|
EGU24-15084
|
ITS2.1/CL0.1.2
|
ECS
Fourier-transform infrared (FTIR) spectroscopy on archaeological sediments as a tool for selecting samples for ancient DNA
(withdrawn)
Valentina Vanghi and Viviane Slon
X5.88
|
EGU24-2955
|
ITS2.1/CL0.1.2
|
Highlight
Han Dukki and Nam Seung-Il

Community assembly principles driving microbial biogeography have been studied in many environments, but rarely in the Arctic deep biosphere. The sea-level rise during the Holocene (11–0 ky BP) and its resulting sedimentation and biogeochemical processes can control microbial life in the Arctic sediments. We investigated subsurface sediments from the Arctic Ocean using metabarcoding-based sequencing to characterize bacterial 16S rRNA gene composition, respectively. We found enriched cyanobacterial sequences in methanogenic sediments, suggesting past cyanobacterial blooms in the Arctic Mid-Holocene (7–8 ky BP). Bacterial assemblage profiles with a sedimentary history of Holocene sea-level rise in the Arctic Ocean enabled a better understanding of the ecological processes governing community assembly across Holocene sedimentary habitats. The Arctic subsurface sediments deposited during the Holocene harbour distinguishable bacterial communities reflecting geochemical and paleoclimate separations. These local bacterial communities were phylogenetically influenced by interactions between biotic (symbiosis–competition or immigration–emigration) and abiotic (habitat specificity) factors governing community assembly under paleoclimate conditions. We conclude that bacterial profiles integrated with geological records seem useful for tracking microbial habitat preference, which reflects climate-triggered changes from the paleodepositional environment (the so-called ‘ancient DNAs’).

How to cite: Dukki, H. and Seung-Il, N.: Ancient DNAs: Influence of Sedimentary Deposition on Bacterial Communities in Arctic Holocene Sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2955, https://doi.org/10.5194/egusphere-egu24-2955, 2024.

X5.89
|
EGU24-5928
|
ITS2.1/CL0.1.2
Claire Ansberque, Anna Linderholm, Chris Mark, Malin Kylander, and Frank McDermott

Stalagmites are well-known as paleoclimatic archives, but recent work [e.g., 1,2] has also demonstrated their paleobiological potential as archives of ancient animal and plant DNA. Because of this property, stalagmites have the potential to provide information on how past climatic fluctuations have impacted land fauna, specifically cave fauna of which bats are key ecosystem services providers. The aim of this work is to use stalagmites to gain precisely such knowledge. With this endeavour, we acquired geochemical data (Sr/Ca, δ18O, δ13C) along the growth axis of three early Holocene stalagmites from Ireland, which we used for climatic and environmental reconstruction. In addition, we acquired ancient DNA data in stalagmite laminae, including those where climatic and environmental shifts were observed. Results of these analyses are presented here and include new U-Th-dated stable isotopic curves and ancient DNA data chronologically anchored to stalagmite-derived climatic records. We also discuss our analytical workflow and the pros and cons we faced while combining geological and biological data on stalagmites such as data acquisition resolution, stalagmite chemistry, and DNA data quality.

[1] Stahlschmidt et al. (2019) Scientific Reports, 9, 6628. [2] Marchesini et al. (2023) Quaternary Research, 112, 180-188

How to cite: Ansberque, C., Linderholm, A., Mark, C., Kylander, M., and McDermott, F.: Snapshots of Ireland’s Holocene climate and fauna from stalagmites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5928, https://doi.org/10.5194/egusphere-egu24-5928, 2024.

X5.90
|
EGU24-4247
|
ITS2.1/CL0.1.2
|
ECS
Lei Wang, Xinyi Zhao, Haobo Yin, and Guoying Zhu

The Qinghai-Tibet Plateau (QTP) is an important ecological barrier in China and even East Asia, and its main vegetation cover type is grassland. With the global climate change, the phenological period of grassland on the QTP is constantly changing, which affects the climate and ecosystem through carbon cycle, hydrothermal cycle, etc. The influencing factors of phenology and its future change trend have become the key issues. In this paper, the spring phenological model of the QTP grassland was constructed by using the start of growing season (SOS) extracted from MODIS NDVI, air temperature and soil moisture data from 2000 to 2020. Combined with CMIP6 climate data, the future phenological changes of the QTP grassland under the SSP245 scenario were predicted. The results showed that: (1) The cumulative temperature and cumulative soil water threshold model was effective in simulating spring phenology of grassland on the QTP, and the root-mean-square error was only about 8 days. (2) The climatic thresholds at SOS of different vegetation types are closely related to their spatial distribution locations. Vegetation growth in the eastern and southern parts of the QTP requires higher hydrothermal conditions. (3) The QTP showed an overall warming and wetting trend in the future, with greater changes in the first half of the 21st century than those in the second half of the 21st century. (4) The advance of SOS in the northwest grassland was significantly higher than that in the southeast grassland. By the end of the 21st century, most grasslands on the QTP began to grow before mid-June.

How to cite: Wang, L., Zhao, X., Yin, H., and Zhu, G.: Modeling and future prediction of spring phenology in grassland on the Qinghai-Tibetan Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4247, https://doi.org/10.5194/egusphere-egu24-4247, 2024.

X5.91
|
EGU24-18850
|
ITS2.1/CL0.1.2
|
ECS
|
|
Claus Sarnighausen, Maximilian Kotz, Leonie Wenz, and Sanam Vardag

The increasing relevance of climate change as a threat of species extinction is a pressing concern, as highlighted by the recent IUCN Red List accessment for amphibians (Luedtke et al., 2023). Despite the reported threats of climate change, measuring its influence across species remains complex and lacking the appropiate tools (Cazalis et al., 2022). Changes in "climate niche", referring to the environmental conditions necessary for a species to thrive, have long been discussed and used to predict species distributions and extinctions. Here, we utilize the recently available Red List classifications to test this paradigm within state-of-the-art predictive models of comparative extinction risk. Using historical weather data from the ERA-5 reanalysis, we explore the predictive significance of a wide range of potential definitions of climate niche exceedance. Extinction risk models have consistently identified geographic range size and human population density as important correlates to extinction risk. Also controling for factors such as habitat fragmentation, land use, human preassures, biogeographical realms and biological traits, we use a random forest model to predict the transitions between Red List categories for over 5.000 amphibian species and evaluate results against the official accessments. This approach tests the evidence base of the climate niche paradigm and evaluates its effectiveness as a tool for incorporating climate change into extinction risk models.


Luedtke, J.A., Chanson, J., Neam, K. et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622, 308–314 (2023). https://doi.org/10.1038/s41586-023-06578-4

Cazalis, V., Di Marco, M., Butchart, S. H. et al., Bridging the research-implementation gap in iucn red list assessments, Trends in Ecology & Evolution (2022).
https://doi.org/10.1016/j.tree.2021.12.002

How to cite: Sarnighausen, C., Kotz, M., Wenz, L., and Vardag, S.: Testing the climate-niche paradigm for species extinction risk, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18850, https://doi.org/10.5194/egusphere-egu24-18850, 2024.

X5.92
|
EGU24-10113
|
ITS2.1/CL0.1.2
|
ECS
|
|
Shuai Wu, Manuel Delgado-Baquerizo, and Aidong Ruan

Dune ecosystems are among the most vulnerable regions to climate change worldwide. However, studies on how crossing critical aridity thresholds influence the microbiome of these ecosystems remains scarce. These microbes play a pivotal role in shaping terrestrial ecosystem traits and functions.

In this study, we collected 1.4-meter sediment cores at 5 cm intervals from deserts in Xinjiang, China, in two study sites before and after crossing a previously described aridity threshold. We conducted a comprehensive analysis of community diversity and spatial structure, in light of the changes in environmental heterogeneity and autocorrelation, further exploring the community’s differential sensitivity to fluctuations and evidence of state transitions under various states.

The results demonstrate that microbial communities in sand dunes before and after crossing aridity thresholds exhibit distinct vertical ecological niche differentiation patterns under spatial effects. This includes variations in their beta diversity, rarity mode, assembly process, topological properties, and the stability of their networks. This offers new insights into the possible evidence of microbial community state transitions and potential mechanisms in deserts crossing aridity thresholds.

How to cite: Wu, S., Delgado-Baquerizo, M., and Ruan, A.: Microbial evidences of abrupt shifts in dunes ecosystems after passing an aridity threshold, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10113, https://doi.org/10.5194/egusphere-egu24-10113, 2024.

X5.93
|
EGU24-6756
|
ITS2.1/CL0.1.2
|
ECS
|
Meryem Qacami, Marc-André Bourgault, Mohamed Chikhaoui, Thierry Badard, Mélanie Trudel, and Bhiry Najat

Understanding the intricacies of climate behavior is paramount for regions like Houceima-Tanger-Tétouan, where agroclimatic phenomena directly influence socio-economic stability. This study rigorously evaluates the performance of climate models against the ERA5-Land reanalysis data, focusing on two pivotal agroclimatic indices: dry spell and heat wave frequencies. Such indices are integral for regional drought risk management, agricultural planning, and environmental policy formulation.

Our approach integrates a dual comparison framework—comparing model outputs against each other (inter-model) and against multiple runs of the same model (intra-model). We also validate the ERA5-Land data against 16 years of in-situ measurements to confirm its aptitude as a benchmark dataset, particularly examining its representation of temperature and precipitation.

Findings indicate a strong temperature data correlation with in-situ measurements, affirming the ERA5-Land's reliability for temperature-related indices. However, precipitation data showed considerable variability, necessitating cautious application and potential model adjustments. Among the models, the MOHC-HadGEM2-ES demonstrated notable accuracy in dry spell predictions for selected domains, while the MPI-M-MPI-ESM-MR model stood out for its heat wave frequency projections, especially in the EUR-44 domain.

Our results pave the way for selecting the most appropriate models for regional climate projections. They also highlight the necessity of model calibration, especially for precipitation indices, to ensure the precision of climate-related predictions. The study contributes to the field by providing a clear pathway for the utilization of tailored climate models in developing robust adaptive strategies to climate variability in the Houceima-Tanger-Tétouan region.

How to cite: Qacami, M., Bourgault, M.-A., Chikhaoui, M., Badard, T., Trudel, M., and Najat, B.: Assessing Model Relevance: Agroclimatic Indices Across Different CORDEX Domains for Enhanced Climate Projections in the Houceima-Tanger-Tétouan Region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6756, https://doi.org/10.5194/egusphere-egu24-6756, 2024.

X5.94
|
EGU24-12629
|
ITS2.1/CL0.1.2
|
ECS
|
|
Chantal Hari, Markus Fischer, and Édouard Davin

Increasing conservation efforts are required to avert biodiversity decline caused by climate and land use changes.

In a recent study (Hari et al. in prep), we combined climate change scenarios (RCP2.6 and RCP6.0) and land use change projections to assess their impact on future species distribution for a large number of mammals, birds and amphibians. Future projections of land use change were derived from the Land Use Harmonization dataset v2 (LUH2), which does not make any explicit assumptions about the area under protection in these scenarios.

Here, we extend the scope of our future biodiversity projections by adding new land use scenarios explicitly accounting for different “Nature Futures” in the sense of different levels of biodiversity conservation (i.e., current protected areas or 30x30 target). In the first conservation scenario, we fix the protected areas based on the World Database on Protected Areas (WDPA), thereby assuming that protected areas will remain the same in the future as it is today. In a second category of scenarios, we create land use scenarios compatible with the Global Biodiversity Framework’s “30x30” target based on the spatially optimized dataset by Jung et al. (2021) combined with LUH2.

We then quantify how incorporating different levels of protected areas for conservation change the future species richness based on our land use filtering approach. We also analyze how these two scenarios of land management for conservation interfere with different levels of global warming and what are the implications for the climate resilience of different biodiversity conservation choices.

How to cite: Hari, C., Fischer, M., and Davin, É.: The impact of protected areas on biodiversity conservation under different climate and land use change projections, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12629, https://doi.org/10.5194/egusphere-egu24-12629, 2024.

X5.95
|
EGU24-19276
|
ITS2.1/CL0.1.2
|
ECS
Dew is disappearing from much of Germany, what does it mean for seasonal plant growth?
(withdrawn)
Tyson Terry and Anke Jentsch
X5.96
|
EGU24-14448
|
ITS2.1/CL0.1.2
|
|
Jiaoyang Ruan, Hong Ao, María Martinón-Torrese, Mario Krapp, Diederik Liebrandh, Mark J. Dekkers, Thibaut Caley, Tara N. Jonell, Zongmin Zhu, Chunju Huang, Xinxia Li, Ziyun Zhang, Qiang Sun, Pingguo Yang, Jiali Jiang, Xinzhou Li, Yougui Song, Xiaoke Qiang, Peng Zhang, and Zhisheng An

The relationship between initial Homo sapiens dispersal from Africa to East Asia and the orbitally paced evolution of the Asian summer monsoon (ASM)—currently the largest monsoon system—remains underexplored due to lack of coordinated synthesis of both Asianpaleoanthropological and paleoclimatic data. Here, we investigate orbital-scale ASM dynamics during the last 280 thousand years (kyr) and their likely influences on early H. sapiens dispersal to East Asia, through a unique integration of i) new centennial-resolution ASM records from the Chinese Loess Plateau, ii) model-basedEast Asian hydroclimatic reconstructions, iii) paleoanthropological data compilations, and iv) global H. sapiens habitat suitability simulations. Our combined proxy- and model-based reconstructions suggest that ASM precipitation responded to a combination of Northern Hemisphere ice volume, greenhouse gas, and regional summer insolation forcing, with cooccurring primary orbital cycles of ~100-kyr,41-kyr, and ~20-kyr. Between ~125 and 70 kyr ago, summer monsoon rains and temperatures increased in vast areas across Asia. This episode coincides with the earliest H. sapiens fossil occurrence at multiple localities in East Asia. Following the transcontinental increase in simulated habitat suitability, we suggest that ASM strengthening together with Southeast African climate deterioration may have promoted the initial H. sapiens dispersal from their African homeland to remote East Asia during the last interglacial.

How to cite: Ruan, J., Ao, H., Martinón-Torrese, M., Krapp, M., Liebrandh, D., Dekkers, M. J., Caley, T., Jonell, T. N., Zhu, Z., Huang, C., Li, X., Zhang, Z., Sun, Q., Yang, P., Jiang, J., Li, X., Song, Y., Qiang, X., Zhang, P., and An, Z.: Concurrent Asian monsoon strengthening and early modern human dispersal to East Asia during the last interglacial, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14448, https://doi.org/10.5194/egusphere-egu24-14448, 2024.

Posters virtual: Tue, 16 Apr, 14:00–15:45 | vHall X5

Display time: Tue, 16 Apr 08:30–Tue, 16 Apr 18:00
Chairperson: Hae-Li Park
vX5.15
|
EGU24-2668
|
ITS2.1/CL0.1.2
|
ECS
|
|
Zhe Wang, Bin Zhou, Xiangchun Xu, Yang Pang, Michael Bird, Bin Wang, Michael Meadows, and David Taylor

Long-term climate trends superimposed on climate variability changes are recognized to manipulate the living environments, and ultimately ecological resources for hominins, which in turn affect hominin activities. Archaeological evidence from loess sediments from Shangchen on the southeastern Chinese Loess Plateau indicates a suspension of hominin occupation around the time of the early mid-Pleistocene climate transition (MPT), prompting a re-assessment of climate-vegetation-hominin interactions. Our research generated magnetic susceptibility, total organic carbon cotent and its carbon isotope compositions, black carbon content and brGDGTs-derived mean annual temperatue and precipitation records in loess deposits with in situ lithic records covering the period of hominin occupation (~2.1–0.6 Ma). The results reveal four distinct climate-vegetation periods (2.1–1.8 Ma, 1.8–1.26 Ma, 1.26–0.9 Ma and 0.9–0.6 Ma). During the early MPT (1.26–0.9 Ma), unprecendently high variability in climate-environment and a long-term aridification with C4 vegetation expansion trend may have driven early humans to move to more hospitable locations in the region. Comparison with the record at Nihewan indicates that large-scale climate oscillations induced disparate hominin responses due to distinctive local environmental conditions.

How to cite: Wang, Z., Zhou, B., Xu, X., Pang, Y., Bird, M., Wang, B., Meadows, M., and Taylor, D.: Hominin response to oscillations in climate and local environments during the Mid-Pleistocene Climate Transition in northern China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2668, https://doi.org/10.5194/egusphere-egu24-2668, 2024.

vX5.16
|
EGU24-9488
|
ITS2.1/CL0.1.2
|
ECS
Dinara Zhunissova, Professor David Topping, and Professor James Evans

With growing concern about climate change and the increasing importance of Internet of Things (IoT) devices, the interaction between these two topics has been a focus of increased research. The purpose of this research paper, "Enhancing Climate Change Resilience in IoT Devices: Qualitative Analysis of Problems, Innovations, and Best Practises of IoT Devices," is to conduct a comprehensive qualitative analysis of the relation between IoT technology and climate resilience. This paper details the findings, providing contribution to the departments by offering solutions and recommendations that organisations can consider for improving the resilience of IoT devices in a severe weather condition. The paper includes an in-depth analysis of the present condition of IoT device usage, showing the broad and diverse areas of their application in many sectors, such as smart infrastructure, industrial manufacturing, agriculture, healthcare and more. This analysis highlights that many companies in both, the public and private sectors, are using sensors, actuators, cameras, routers and other devices. It then conducts a qualitative analysis of the particular problems that these devices deal with when subjected to challenging climatic conditions, with a focus on the impact of the environment on their performance. The paper illustrates IoT devices that have shown great climate resilience through real-world examples and in-depth qualitative evaluations of effective situations, delivering useful quality lessons for both developers and consumers. Furthermore, the study conducts a qualitative analysis of the elements that manufacturers and developers should consider while developing climate resistant IoT devices.

The evaluation of the importance of quality aspects, such as standards and certifications, in assuring the reliability of IoT devices in various climatic situations is a key aspect of this qualitative study. The paper conducts deep research of these parameters and their influence on device performance, it also emphasises the significance of subjective components of maintenance and protection practises, providing organisations with practical qualitative to overcome severe weather conditions and secure their IoT devices. By looking more closely at these factors, the study aims to find the deeper fundamental factors that affect how resilient and durable devices are. Bringing up the importance of qualitative aspects of maintenance and protection practises shows how important it is to think about not only technological aspects but also subjective features that make IoT devices more durable and make sure they work well even in extreme weather conditions. Over this research, comprehensive interviews with IT professionals from a variety of companies were used to gather data for this study. Open-ended questions were used to get rich and detailed insights. Along with the descriptive information, reports from the sector, case studies, and best practises were also analysed analytically. This created a complete narrative framework for learning about the problems and chances that come with those devices that are resilient to climate change. Besides that, includes qualitative analysis of predicted quality improvements and IoT device applications, taking into consideration changing climatic challenges and technology developments. Remote tracking and predictive maintenance are critical for maintaining the reliability and resilience of IoT devices.  

 

How to cite: Zhunissova, D., Topping, P. D., and Evans, P. J.: Enhancing Climate Resilience in IoT Devices: Challenges, innovations, and best practices. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9488, https://doi.org/10.5194/egusphere-egu24-9488, 2024.