- 1Universidad de Alicante, Matemática Aplicada, San Vicente del Raspeig, Spain (lucia.delnido@ua.es)
- 2Instituto Geográfico Nacional, Madrid, España
The accuracy and reliability of Earth Orientation Parameters (EOP) are significantly influenced by the geometric configuration of the Very Long Baseline Interferometry (VLBI) network. This astronomical technique employs a global network of radio telescopes to collect data. The distribution of VLBI antennas affects the triangulation process used to determine the positions of celestial sources, which is integral to the calculation of EOP. An optimal geometry yields more accurate and reliable EOP results, which are essential for many scientific applications.
This study examines the impact of different VLBI networks on EOP estimation, using data collected during several Continuous VLBI Campaigns (CONT) and designing alternative networks by removing various antennas and/or baselines from the original configuration. The results of this analysis aim to contribute to the refinement of EOP and the achievement of the stringent GGOS accuracy targets (i.e., a frame with accuracy at epoch of 1 mm or better and a stability of 0.1 mm/y).
How to cite: del Nido Herranz, L. D., Belda, S., Karbon, M., Ferrándiz, J. M., and Azcue Infanzón, E.: Influence of VLBI Network Geometry on the Estimation of Earth Orientation Parameters, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-20077, https://doi.org/10.5194/egusphere-egu25-20077, 2025.