HS4.11 | Hydrological forecasting in urban and regulated catchments
EDI
Hydrological forecasting in urban and regulated catchments
Convener: Shasha HanECSECS | Co-conveners: Qiuhua Liang, Gemma Coxon, Poulomi Ganguli, Ignazio Giuntoli

Anthropogenic activities have profoundly altered the water cycle, especially in urban and regulated catchments, leading to further changes in the frequency, magnitude, and timing of hydroclimatic extremes in a warming climate. These modifications include reservoir and dam constructions, drainage systems, urban land expansion, urban infrastructure development, water abstraction, wastewater discharge, and associated management aspects and contingency plans.

Despite recent advances in hydrology research and technology developments in the Anthropocene, our understanding of human–water interactions in both large- and local-scale hydrologic systems remains elusive. This knowledge gap is mainly due to the complexity of human influences, limited and patchy records on human activities, and the inadequacy of conventional modelling approaches that are often designed for natural catchments assuming stationarity conditions. As a result, the accuracy and reliability of hydrological forecasting in these human-influenced catchments are significantly affected. Given the large populations potentially affected by water-related hazards in these areas, there is an urgent need for more focused attention and research.

This session will explore recent advances in hydrological forecasting (e.g. floods, droughts, moisture-driven landslides, and compound or cascading hydro-hazards) for urban and regulated catchments. We invite abstracts focusing on (but not limited to) the following topics:
• Developments and applications of advanced statistical, process-based, and machine learning models for forecasting hydroclimatic extremes in urban or regulated catchment
• Recent developments in data acquisition for capturing human activities (or proxy data), including in-situ measurements, remote sensing, paleoclimatic record, and social media, as well as hydrological dataset analytics and integration
• Novel quantitative approaches for human impacts (of any type) on the water cycle and hydrological processes
• Impact-based assessment of water-related risks, such as economic impacts, human health and safety, social and community impacts, and environmental impacts
• Uncertainty quantifications and risk assessments of singular and compound hydro-hazards under climate non-stationarity
• Improved visualization and effective communication methods designed for early warnings and short-to-long-range predictions of rare and ‘record-breaking' extreme events.

Anthropogenic activities have profoundly altered the water cycle, especially in urban and regulated catchments, leading to further changes in the frequency, magnitude, and timing of hydroclimatic extremes in a warming climate. These modifications include reservoir and dam constructions, drainage systems, urban land expansion, urban infrastructure development, water abstraction, wastewater discharge, and associated management aspects and contingency plans.

Despite recent advances in hydrology research and technology developments in the Anthropocene, our understanding of human–water interactions in both large- and local-scale hydrologic systems remains elusive. This knowledge gap is mainly due to the complexity of human influences, limited and patchy records on human activities, and the inadequacy of conventional modelling approaches that are often designed for natural catchments assuming stationarity conditions. As a result, the accuracy and reliability of hydrological forecasting in these human-influenced catchments are significantly affected. Given the large populations potentially affected by water-related hazards in these areas, there is an urgent need for more focused attention and research.

This session will explore recent advances in hydrological forecasting (e.g. floods, droughts, moisture-driven landslides, and compound or cascading hydro-hazards) for urban and regulated catchments. We invite abstracts focusing on (but not limited to) the following topics:
• Developments and applications of advanced statistical, process-based, and machine learning models for forecasting hydroclimatic extremes in urban or regulated catchment
• Recent developments in data acquisition for capturing human activities (or proxy data), including in-situ measurements, remote sensing, paleoclimatic record, and social media, as well as hydrological dataset analytics and integration
• Novel quantitative approaches for human impacts (of any type) on the water cycle and hydrological processes
• Impact-based assessment of water-related risks, such as economic impacts, human health and safety, social and community impacts, and environmental impacts
• Uncertainty quantifications and risk assessments of singular and compound hydro-hazards under climate non-stationarity
• Improved visualization and effective communication methods designed for early warnings and short-to-long-range predictions of rare and ‘record-breaking' extreme events.