HS4.7 | Advances in flood forecasting and warning systems
EDI
Advances in flood forecasting and warning systems
Convener: Sanjaykumar Yadav | Co-conveners: Ramesh Teegavarapu, Biswa Bhattacharya, Rashmi Yadav, Ayushi Panchal

One of the key issues in addressing flood-related disasters is the development of improved flood forecasting and early warning systems. With the advancements in hydro-meteorological measurement techniques through ground-based weather radar systems and satellite-based surrogate measurements in data scarce regions and data availability at different spatial and temporal scales, improved methods for forecasting with reasonable lead times can be developed. Advanced innovative methods and conceptual improvements in existing approaches are required to address the modeling and management of extreme floods' spatial and temporal complexity. The ensemble forecasting technique continues to be used for different lead time durations and for probabilistic flood forecasting. Different flood forecasting methods, including conceptually simple ones, are in use around the globe considering the complexity of the river basins, the cost of the development of the models, the lack of comprehensive hydro-meteorological monitoring networks, and other issues. One of the major factors of the cascading uncertainty through the hydrological models needs to be addressed in the probabilistic flood forecasting systems. This session aims to connect, identify, and publish the efforts of researchers globally to improve flood forecasting and issue early warnings ahead of catastrophic events. Research studies and case-study-specific studies dealing with the evaluation and verification of hydro-meteorological data, advanced forecasting methods, significant advances in ensemble forecasting techniques, and early warning systems in data-scarce and rich regions are appropriate for this session. The session also welcomes studies based on physics-based models and data-driven models.

One of the key issues in addressing flood-related disasters is the development of improved flood forecasting and early warning systems. With the advancements in hydro-meteorological measurement techniques through ground-based weather radar systems and satellite-based surrogate measurements in data scarce regions and data availability at different spatial and temporal scales, improved methods for forecasting with reasonable lead times can be developed. Advanced innovative methods and conceptual improvements in existing approaches are required to address the modeling and management of extreme floods' spatial and temporal complexity. The ensemble forecasting technique continues to be used for different lead time durations and for probabilistic flood forecasting. Different flood forecasting methods, including conceptually simple ones, are in use around the globe considering the complexity of the river basins, the cost of the development of the models, the lack of comprehensive hydro-meteorological monitoring networks, and other issues. One of the major factors of the cascading uncertainty through the hydrological models needs to be addressed in the probabilistic flood forecasting systems. This session aims to connect, identify, and publish the efforts of researchers globally to improve flood forecasting and issue early warnings ahead of catastrophic events. Research studies and case-study-specific studies dealing with the evaluation and verification of hydro-meteorological data, advanced forecasting methods, significant advances in ensemble forecasting techniques, and early warning systems in data-scarce and rich regions are appropriate for this session. The session also welcomes studies based on physics-based models and data-driven models.