HS4.1 | Short-range forecasting and monitoring of heavy rainfall induced hazards and risks: surface water floods, flash-floods, and geomorphic hazards
EDI PICO
Short-range forecasting and monitoring of heavy rainfall induced hazards and risks: surface water floods, flash-floods, and geomorphic hazards
Convener: Shinju Park | Co-conveners: Clàudia Abancó, Olivier Payrastre, Daniela Peredo Ramirez

Heavy precipitation in small- to medium-sized catchments causes several hazards, including surface water floods (prior to water entering drainage networks or streams) or flash floods, erosion and sediment transport, debris flows and shallow landslides, which may all result in catastrophic risks.
Enhancing the anticipation of such hazards is crucial for effective crisis management and eventually reducing the losses. Nonetheless, numerous challenges still exist regarding their temporal and spatial predictability. Firstly, the rapid development of triggering rainfall events, the scarcity of suitable observations, and the high variability and non-linearity of the physical processes can generate significant uncertainty. Additionally, the concurrent occurrence of multiple hazards, the substantial variability in societal exposure, and the intricacies of socioeconomic vulnerability complicate the assessment of overall potential risks.
This session aims to illustrate current advances in monitoring, modeling, and short-range forecasting of rainfall-induced surface water floods, flash floods, and associated geomorphic hazards including their impacts. Contributions to the following scientific themes are specifically expected:
- Monitoring and nowcasting of heavy precipitation events based on radar and remote sensing (satellite, lightning, ..), to complement rain gauge networks
- New direct and indirect (proxy data) observation techniques and strategies for the observation or monitoring of rainfall-induced-hazards, and the validation of forecasting approaches.
- Short-range heavy precipitation forecasting based on Numerical Weather Prediction models, with a focus on seamless forecasting strategies, and ensembles for the representation of uncertainties.
- Development of integrated short-range hydro-meteorological forecasting chains and new modeling approaches for predicting rainfall-induced hazards in gauged and ungauged basins
- Understanding and modeling of surface water floods, flash floods, geomorphic processes, impacts, and their cascading effects, at appropriate space-time scales
- Risk modeling and forecasting approaches, including inundation mapping, damages modeling, and/or specific impacts modeling approaches for the representation of societal vulnerability.
- Assessing changes of rainfall induced hazards due to the coexistence with other types of hazards.

Heavy precipitation in small- to medium-sized catchments causes several hazards, including surface water floods (prior to water entering drainage networks or streams) or flash floods, erosion and sediment transport, debris flows and shallow landslides, which may all result in catastrophic risks.
Enhancing the anticipation of such hazards is crucial for effective crisis management and eventually reducing the losses. Nonetheless, numerous challenges still exist regarding their temporal and spatial predictability. Firstly, the rapid development of triggering rainfall events, the scarcity of suitable observations, and the high variability and non-linearity of the physical processes can generate significant uncertainty. Additionally, the concurrent occurrence of multiple hazards, the substantial variability in societal exposure, and the intricacies of socioeconomic vulnerability complicate the assessment of overall potential risks.
This session aims to illustrate current advances in monitoring, modeling, and short-range forecasting of rainfall-induced surface water floods, flash floods, and associated geomorphic hazards including their impacts. Contributions to the following scientific themes are specifically expected:
- Monitoring and nowcasting of heavy precipitation events based on radar and remote sensing (satellite, lightning, ..), to complement rain gauge networks
- New direct and indirect (proxy data) observation techniques and strategies for the observation or monitoring of rainfall-induced-hazards, and the validation of forecasting approaches.
- Short-range heavy precipitation forecasting based on Numerical Weather Prediction models, with a focus on seamless forecasting strategies, and ensembles for the representation of uncertainties.
- Development of integrated short-range hydro-meteorological forecasting chains and new modeling approaches for predicting rainfall-induced hazards in gauged and ungauged basins
- Understanding and modeling of surface water floods, flash floods, geomorphic processes, impacts, and their cascading effects, at appropriate space-time scales
- Risk modeling and forecasting approaches, including inundation mapping, damages modeling, and/or specific impacts modeling approaches for the representation of societal vulnerability.
- Assessing changes of rainfall induced hazards due to the coexistence with other types of hazards.