From Deposition to Deep Burial: Unraveling Diagenetic Pathways and Their Impact on Sedimentary Basins
This session, therefore, aims to explore these relationships from initial sediment deposition to deep burial, with a strong emphasis on the multidisciplinary nature of diagenesis and its integration with various geological processes. We invite contributions that advance our knowledge through:
• Diagenetic processes across varying depths and time scales, focusing on their temporal and spatial variability and their impact on the evolution of sedimentary basins, as well as the prediction and modeling of reservoir quality.
• Investigations of the mechanical and chemical compaction of sedimentary rocks, including the role of cementation, clay mineral formation, mineral replacement and dissolution, in shaping reservoir quality and fluid pathways.
• Examinations of geobiochemical alterations in sedimentary rocks, tracing the evolution of organic and inorganic processes from initial deposition through to deep burial, and their effects on mineralogy, fluid composition, and mechanical properties.
• Quantification and modeling of fluid flow patterns within sedimentary basins, integrating field data, laboratory measurements, and numerical simulations to elucidate the controls on fluid distribution and pathways.
• Exploration of the impact of diagenesis on the long-term stability and integrity of subsurface storage sites for CO2, hydrogen, and other gases, as well as implications for groundwater systems.