HS8.2.1 | Self-Potential in geoscience: applications and advances in fluid circulation and geological processes
EDI
Self-Potential in geoscience: applications and advances in fluid circulation and geological processes
Convener: Marceau Gresse | Co-conveners: Stéphanie Barde-Cabusson, Anthony Finizola, Andre Revil

Self-potential (SP) is a non-invasive geophysical method used to map the natural electrical potential/field of the earth's surface. It allows to image and monitor fluid flow as well as any biotic or abiotic process out of thermodynamic equilibrium in the subsurface of the Earth able to generate an electrical current.
In this session, we invite submissions on the applications of self-potential method in hydrogeophysics including applications related to alluvial, and coastal aquifers; soil contamination; agriculture; fault zones; landslides; mining exploration; hydrothermal-geothermal systems; and volcanology. We encourage as well, talks or posters related to innovative laboratory experiments, field survey methods/methodologies, and advancements in theoretical and numerical modeling of this method. We also invite the use of a combination of coupled and joint approaches of self-potential signals in order to provide quantitative constraints on various hydrological and biochemical processes.

Self-potential (SP) is a non-invasive geophysical method used to map the natural electrical potential/field of the earth's surface. It allows to image and monitor fluid flow as well as any biotic or abiotic process out of thermodynamic equilibrium in the subsurface of the Earth able to generate an electrical current.
In this session, we invite submissions on the applications of self-potential method in hydrogeophysics including applications related to alluvial, and coastal aquifers; soil contamination; agriculture; fault zones; landslides; mining exploration; hydrothermal-geothermal systems; and volcanology. We encourage as well, talks or posters related to innovative laboratory experiments, field survey methods/methodologies, and advancements in theoretical and numerical modeling of this method. We also invite the use of a combination of coupled and joint approaches of self-potential signals in order to provide quantitative constraints on various hydrological and biochemical processes.