HS4.2 | Drought and water scarcity: monitoring, modelling and forecasting to improve drought risk management
EDI
Drought and water scarcity: monitoring, modelling and forecasting to improve drought risk management
Co-organized by NH14
Convener: Carmelo Cammalleri | Co-conveners: Brunella Bonaccorso, Athanasios Loukas, Yonca Cavus, Andrew Schepen

Drought and water scarcity affect many regions of the Earth, including areas generally considered water rich. The projected increase in the severity and frequency of droughts may lead to an increase of water scarcity, particularly in regions that are already water-stressed, and where overexploitation of available water resources can exacerbate the consequences droughts have. This may lead to (long-term) environmental and socio-economic impacts. Drought Monitoring and Forecasting are recognised as one of three pillars of effective drought management, and it is, therefore, necessary to improve both monitoring and sub-seasonal to seasonal forecasting for droughts and water availability, and to develop innovative indicators and methodologies that translate the data and information to underpin effective drought early warning and risk management.

This session addresses statistical, remote sensing, physically-based techniques, as well as artificial intelligence and machine learning techniques; aimed at monitoring, modelling and forecasting hydro-meteorological variables relevant to drought and water scarcity. These include, but are not limited to: precipitation, extreme temperatures, snow cover, soil moisture, streamflow, groundwater levels, and the propagation of drought through the hydrological cycle. The development and implementation of drought indicators meaningful to decision-making processes, and ways of presenting and integrating these with the needs and knowledges of water managers, policymakers and other stakeholders, are further issues that are addressed and are invited to submit to this session. Contributions focusing on the interrelationship and feedbacks between drought, low flows, and water scarcity, ; and the impacts these have on socio-economic sectors including agriculture, energy and ecosystems, are welcomed. The session aims to bring together scientists, practitioners and stakeholders in the fields of hydrology and meteorology, as well as in the fields of water resources and drought risk management. Particularly welcome are applications and real-world case studies, both from regions that have long been exposed to significant water stress, as well as regions that are increasingly experiencing water shortages due to drought and where drought warning, supported by state-of-the-art monitoring and forecasting of water resources availability, is likely to become more important in the future.

Drought and water scarcity affect many regions of the Earth, including areas generally considered water rich. The projected increase in the severity and frequency of droughts may lead to an increase of water scarcity, particularly in regions that are already water-stressed, and where overexploitation of available water resources can exacerbate the consequences droughts have. This may lead to (long-term) environmental and socio-economic impacts. Drought Monitoring and Forecasting are recognised as one of three pillars of effective drought management, and it is, therefore, necessary to improve both monitoring and sub-seasonal to seasonal forecasting for droughts and water availability, and to develop innovative indicators and methodologies that translate the data and information to underpin effective drought early warning and risk management.

This session addresses statistical, remote sensing, physically-based techniques, as well as artificial intelligence and machine learning techniques; aimed at monitoring, modelling and forecasting hydro-meteorological variables relevant to drought and water scarcity. These include, but are not limited to: precipitation, extreme temperatures, snow cover, soil moisture, streamflow, groundwater levels, and the propagation of drought through the hydrological cycle. The development and implementation of drought indicators meaningful to decision-making processes, and ways of presenting and integrating these with the needs and knowledges of water managers, policymakers and other stakeholders, are further issues that are addressed and are invited to submit to this session. Contributions focusing on the interrelationship and feedbacks between drought, low flows, and water scarcity, ; and the impacts these have on socio-economic sectors including agriculture, energy and ecosystems, are welcomed. The session aims to bring together scientists, practitioners and stakeholders in the fields of hydrology and meteorology, as well as in the fields of water resources and drought risk management. Particularly welcome are applications and real-world case studies, both from regions that have long been exposed to significant water stress, as well as regions that are increasingly experiencing water shortages due to drought and where drought warning, supported by state-of-the-art monitoring and forecasting of water resources availability, is likely to become more important in the future.